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ABSTrACT

Specific gravity (SG) and moisture content (MC) both have a strong 
influence on the quantity and quality of wood fiber. We proposed 
a multivariate mixed model system to model the two properties 
simultaneously. Disk SG and MC at different height levels were measured 
from 3 trees in 135 stands across the natural range of loblolly pine and the 
stand level values were used for the modeling SG-MC system. Regional 
variation in mean trend of the properties was incorporated in the model. 
Contemporaneous correlation between the SG and MC was accounted by 
defining within stand error structure appropriately. Compared to univariate 
models, predictions based on the multivariate model were improved by 29 
and 26 % in root mean square prediction error for disk SG and MC after 
taking account of the contemporaneous correlation. 

InTroDUCTIon

A forest is a complex dynamic system with inter-related 
individual components. Foresters commonly rely on 
simultaneous modeling systems to explain such inter-
dependent systems. One familiar example of such a 
system to forest biometricians is simultaneous modeling of 
dominant height, basal area, trees per hectare and volume 
(Borders 1989; Fang et al. 2001; Hall and Clutter 2004). 
Two main reasons for the popularity of simultaneous 
modeling systems in forestry are: 1) compatibility 
requirement of individual components in the system (Clutter 
1963); 2) contemporaneous correlation of error among 
individual components in the system. 

Specific gravity (SG) and moisture content (MC) both 
have a strong influence on the quantity and quality of 
wood. SG describes the mass of woody material present 
in a given volume of wood. It is a unit-less measure and 
expressed as the ratio of wood basic density (oven dry 
weight divided by green volume) with the density of water 
at 4oC (Megraw 1985). SG is considered an important wood 
property because of its strong correlation with the strength 
of solid wood products, as well as the yield and quality of 

pulp produced (Panshin and deZeeuw 1980). Generally the 
moisture content of wood is expressed as a percentage of the 
oven dry weight of wood. Moisture content influences the 
physical and mechanical properties of wood, resistance to 
biological deterioration and dimensional stability (Haygreen 
and Bowyer 1996).

SG and MC vary considerably within loblolly pine (Pinus 
taeda L.) trees. SG follows a decreasing trend with tree 
height (He 2004; Megraw 1985; Phillips 2002; Zobel and 
Blair 1976), while MC increases with height (Koch 1972; 
Phillips 2002). It has been reported that these two variables 
are highly negatively correlated with high SG associated 
with low MC and vice-versa (Koch 1972; Zobel and Blair 
1976). The primary factor controlling the longitudinal 
variation in disk SG and MC in a loblolly pine tree is the 
proportion of juvenile wood (Zobel and Blair 1976; Zobel 
and vanBuijtenen 1989). In general, the proportion of 
juvenile wood is higher towards the top of a tree than at the 
base and juvenile wood has lower SG and higher MC than 
mature wood.

The objective of this study was to model the longitudinal 
variation in disk SG and MC as a simultaneous multivariate 
mixed model system. We will show how contemporaneous 
correlation between these two variables (disk SG and MC) 
can be potentially utilized to improve the prediction of disk 
SG or MC for loblolly pine at any height.

DATA

The Wood Quality Consortium at the University of Georgia 
and the United States Department of Agriculture (USDA) 
Forest Service Southern Research station sampled planted 
loblolly pine across its natural range to study the longitudinal 
variation in wood SG and MC. Trees were sampled from 
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135 stands from six physiographic regions across the 
southeastern United States. Regions sampled included: 1- 
southern Atlantic Coastal Plain (R1), 2- northern Atlantic 
Coastal Plain (R2), 3- Upper Coastal Plain (R3), 4- Piedmont 
(R4), 5- Gulf Coastal Plain (R5) and 6- Hilly Coastal Plain 
(R6). A minimum of 12 plantations from each of the six 
physiographic regions were sampled. The stands selected 
for sampling included 20- to 25-year-old loblolly pine 
plantations planted at 1250 or more trees per hectare and 
having 625 trees per hectare or more after thinning. Only 
stands that were conventionally managed with no fertilization 
(except phosphorus at planting on phosphorus deficient sites) 
and no competition control were sampled. Three trees from 
each stand were felled and cross sectional disks of 3.8 cm 
thickness were collected from 0.15, 1.37 m and then 1.52 m 
intervals along the stem up to a diameter of 50 mm outside 
bark. The disks were sealed in plastic bags and shipped to 
the USDA Forest Service laboratory for physical property 
analysis. Disk SG (based on green volume and oven-dry 
weight) and disk MC (based on green and oven-dry weights) 
were determined for each sampling height. Stand averages 
(at each height) for disk SG and MC were calculated using 
the three trees sampled per stand. A summary of average 
stand characteristics for each region is presented in Table 
3.1. Plots of stand average disk SG and MC with relative 
height are presented in Figures 3.1 and 3.2.

MoDel DeveloPMenT

Two response components are considered in this 
simultaneous model system, disk SG and MC measured at 
the same heights for 3 trees in a stand. The basic models 
adopted for these two components are
  
                  [1]

            [2]

where SG = disk SG; MC = disk MC; x = relative height 
h/H, h  is the average height above ground and H is the 
average total height of the stand calculated from the three 
sampled trees; 

are parameters to be estimated, with knot parameters 
                                                                ;             and 

are error terms for disk SG and MC respectively. 

The                     terms indicates the positive part of the

function               where “+” sets it to zero for those values

of x where                  is negative (here x >      ). The basic 
model form for disk SG is equivalent to the standard form 
of the taper model proposed by Max and Burkhart (1976), 
which is not constrained to have a value of zero at the tip of 
the tree. 

In order to account for stand-to-stand variability in the data, 

we used a nonlinear mixed effect model (NLMM). Let ijky
represent the kth response (k = 1, 2) variable measured at jth 
relative height from ith stand; the univariate nonlinear mixed 
model for each property can be represented as

             [3]
      
 
             [4]

The mixed effect parameter         in the above models takes 
the form
       
             [5]

where ,i kb  is the ith stand level random effect vector specific 

to the kth response variable with 
                               

; ikB is 

the associated random effect design matrix; ikA  is the fixed 
effect design matrix and           is the fixed effect parameter 
vector specific to the kth response variable.

In order to develop the bivariate model, we first fitted the 
univariate stand level NLMM’s model for disk SG (Eq. 
3) and MC (Eq. 4) separately. Initially we assumed all the 
parameters in the univariate models were mixed. Final 
specification of mixed effect parameters in the univariate 
models were decided based on Akaike’s Information Criteria 
(AIC), a model selection criterion used for NLMM’s. 
Parameters 

                                                           
were 

selected as mixed, with random stand level intercepts in 
these parameters. The regional variation in mean trend 
for both properties was incorporated by appropriate fixed 
effect specification (fixed effect design matrix) for all 
parameters, except the knot parameters, in both univariate 
modes. The knot parameters were assumed as common for 
all regions for both properties. Since we had six distinct 
physiographical regions in the study, we assumed different 
fixed effect parameters for each region with the southern 
Atlantic Coastal Plain as the reference region with all 
other regions having their own parameters which are 
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deviations from the reference region. The final fixed effect 
specifications for each parameter were identified using 
univariate models for each property and likelihood ratio test 
between full model and reduced model. The fixed effect 
specifications corresponds to all parameters used in the 
bivariate model are presented in Table 3.2. 

The variance-covariance structure for

in the univariate models were selected based on the model 
selection criteria (AIC and Bayesian information criterion 
(BIC)). We selected a general positive definite form of 
variance-covariance structure for disk SG and a diagonal 
form of variance-covariance structure for disk MC. The 
model information criteria and log likelihood values for 
the final selected univariate models, called SG1 and MC1 
respectively for each response, are presented in Table 3.3.

For fitting the bivariate model, the univariate model 
equations for two responses were stacked together and can 
be represented as 
       
            [6]

where 
                                

. To take account of the 
correlation between responses measured from the same 
stand at the same height level, we assumed the within stand 
variance-covariance matrix as

                 

where                                 . Following Eq. 5, after stacking 
the fixed effect and random effect vectors and design 
matrices for two response variables, we can 
write                               as
        
                         [7]

where  
          

; 
       

; 

                             ;  

and we assumed that                               . 

All the models were fitted using the nlme package in 
R, version 2.9.1 (Pinheiro et al. 2009). Initially the two 
univariate models (Eq. [3] and [4]) were simultaneously 
fitted, referred to as SGMC1, with a positive definite form 
of variance-covariance structure for disk SG, a diagonal 
form of variance-covariance structure for disk MC and 
unique variance parameter estimate for each response 
variable. Here, a block-diagonal form was used to define the 
random effect structure of two responses as follows

The advantage of multivariate fitting over univariate fitting 
is that we can incorporate correlation among errors and 
random effects associated with different response variables 
in the model by specifying different forms of  
(Fang et al. 2001; Hall and Clutter 2004). The 
contemporaneous correlation between responses was 
incorporated by relaxing the form of Ë from an identity 
matrix to a symmetric positive definite matrix (referred to as 
SGMC2). We also allowed for correlation among random 
effects associated with the two models. The final best fitted 
model (referred to as SGMC3) is represented as follows

 
 

 

                         [8]

In [8] the fixed effect 
                        

 indicates parameter 
specific to th

 region specified in Table 3.2 for response 
variable SG (k=1) and for response variable MC (k=2). 

The random effect , ( 1,2)i k kb = indicates the random effect 
parameter specific to the ith stand for response variable SG 
(k=1) and for response variable MC (k=2). 

The model information criteria (AIC and BIC) and log 
likelihood values from simultaneous fitting of the models 
(SGMC1, SGMC2 and SGMC3) are presented in Table 3.3. 
The log likelihood and information criteria from SGMC1 
were equal to the sum of log likelihood and information 

	
  

	
  

	
  

	
  

	
  

	
  

	
   	
  

	
   	
  

	
  

	
  

	
  

	
   	
  

	
  

	
  

yij=f(xij,θi)+εij

Gi(δ) = diag (I1 δ
2I2)

Ri = σ2G1/2(δ)Γ(ρ)G1/2(δ)i i

 1      ρ
Γ(ρ) = 
 ρ     1( )

(εij1 εij2)
T ⎮bi ~ N(0, Ri) , 

where
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criteria from univariate fitting SG1 and MC1. Incorporation 
of contemporaneous correlation into the model (SGMC2) 
significantly improved the model fitting criteria. The final 
model SGMC3 found to have a significant improvement 
in model information criteria over SGMC2. The estimated 
fixed effect parameter from the final simultaneous model 
is presented in Table 3.4. The estimated random effect 
variance-covariance matrix         is

and the within stand residual parameters are 
and   . 

PREDICTION
Our primary objective of developing a simultaneous 
system is to make predictions. The reported advantage 
of using a multivariate method over univariate method 
is its improvement in predictive performance (Fang et 
al. 2001; Hall and Clutter 2004). The information on 
contemporaneous correlation among response variables 
can be potentially utilized to improve the prediction of a 
variable at a particular measurement occasion (here at a 
particular stand height level) given that the observed value 
of other response variables at the specified measurement 
occasion. For example in the proposed multivariate system, 
information of disk SG at any specific height can be 
utilized to improve the prediction of disk MC at that height. 
Similarly, observed disk MC at any specific stand height 
can be utilized to improve the prediction of disk SG at that 
height. 

There are several situations where we can utilize a 
multivariate model to make predictions. Fang et al. (2001) 
dealt with several such prediction scenarios based on 
their height-basal area-volume simultaneous mixed model 
system. In the present study, we are primarily interested 
in prediction from a multivariate model system where 
observations on one of the correlated response variables are 
available. For example, we may want to predict disk MC 
for a stand at different heights when measurements of disk 
SG are available. To this extent, we can utilize a predictor 
proposed by Hall and Clutter (2004) for NLMM’s which 
is based on a linear mixed model (LMM) approximation 

of NLMM. The proposed predictor is analogous to the 
empirical best linear unbiased predictor (BLUP) of LMM. 
It is supposed to perform better than the plug-in-predictor 
proposed for NLMM by Pinheiro and Bates (2000). The 
following on the derivation of a predictor was extracted 
from Hall and Clutter (2004). Generically a NLMM can be 
represent as

            [9]

where      is p x 1 vector of fixed effect parameters and A  is 
a corresponding fixed effect design matrix; b  is q x 1 vector 
of random effect parameters and B  is a corresponding 
random effect design matrix; and  is N x 1 vector of error 
term with                                      .

 Taking first-order Taylor series linearization of Eq. [9] 
around the estimates of     gives

                                     [10]

where 

Now the Eq. 10 can be represented as a LMM on 
                                                                      as follows

       
                                                   [11]

Let us decompose the response vector 
                   

, where 
ó represents the observed component and óh represents 
the unobserved component. Accordingly, all other model 
quantities can be divided as 

Then based on LMM [11], the empirical BLUP of hz  based 

on sz is given as

                  [12]

where 
                        

, the variance-
covariance matrix of z based on LMM approximation [11], 
which can be decomposed into
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ó=f(β, b, A, B)+ε

ó ≈ f(β, b, A, B)+A(β-β)+B(b-b)+ε
~ ~ ˆˆˆˆ

ε

ó = (óT  , óT)s h
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forestry (Fang 1999; Hall and Bailey 2001; Jordan et al. 
2008; Jordan et al. 2006). Univariate mixed models were 
commonly used in forestry to model different growth 
and wood properties. Compared to conventional methods 
univariate mixed models provide improved predictions 
because of their ability to capture different levels of 
variability within the data, e.g. variability from stand-
to-stand, plot-to-plot and tree-to-tree (Fang et al. 2001) 
through random effects in the models. In addition to 
variability observed at different levels of the data, individual 
components (properties) measured from a forest are usually 
inter-dependent. The simultaneous modeling technique can 
take account of the inter-dependency in a system through 
random effects and the inter-dependency among different 
components in the system through contemporaneous 
correlation. 

In this article, we proposed a multivariate simultaneous 
mixed model for stand average disk SG and MC at different 
tree heights. We observed a high correlation (-0.78) between 
two components in our system. The inverse relation between 
SG and MC was identified by Koch (1972), Zobel and 
Blair (1976) and Zobel and van Buijtenen (1989). Various 
explanations have been proposed for the inverse relation 
between SG and MC within trees such as the amount of 
heartwood, the presence of extractives and the proportion 
of juvenile wood. According to Zobel and Blair (1976), the 
dominant factor controlling SG and MC variation within a 
loblolly pine tree is the proportion of juvenile wood and the 
proportion of juvenile wood increases longitudinally from 
stump-to-tip of loblolly pine trees.

The advantage of multivariate simultaneous systems 
is their improvement in prediction in one component 
given the other components in the system (Fang et al. 
2001; Hall and Clutter 2004). Based on this study, we 
found a significant improvement in prediction for both 
properties, approximately 29 and 26 percent reduction 
in RMSPE for both disk SG and MC respectively, based 
on the simultaneous system after taking account of the 
contemporaneous correlation between the components. The 
multivariate plug-in-predictor improved by 5 and 11 percent 
in RMSPE compared to univariate approach for both disk 
SG and MC respectively. This clearly indicates the potential 
of multivariate model fitting over univariate approach. 
Operationally, the proposed system can be used to improve 
the prediction of stand disk SG at different height levels 
using the measured disk MC using non-destructive sampling 
methods. 
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By rearranging [12] using the relation between z  and ó, we 
will get our predictor for      as

          [13]

When 
   

, the predictor specified in Eq. 
[13] takes account of this dependence through        . However when                               ,     and      are 
correlated only through the shared random effects and is 
best approximated by the plug-in-predictor 
                                . Since we are interested in predicting 
the value of one response variable using data where another 
response variable is available or measured at the same 
height from the same stand, we expect that the predictor [13] 
performs better than the plug-in-predictor. 

In order to evaluate the predictive performance of the 
fitted multivariate model, we randomly selected data from 
25 stands. We created a new data set with data from the 
25 selected stands excluded (apart from data measured at 
relative heights equivalent to heights of 1.37 m and 13.7 
m to get the estimate of random effect while fitting) and 
refitted the final model SGMC3 to this new data. We made 
predictions based on [13] for both disk SG and MC for the 
selected 25 stands that were not used for model fitting. Disk 
SG was predicted for the 25 excluded stands assuming that 
disk MC measurements were available for all heights and 
stands. The same assumption was made for disk SG when 
disk MC was predicted for the excluded stands. 

Plots showing the univariate plug-in-prediction, multivariate 
plug-in-prediction and multivariate improved prediction 
(based on Eq. [13]) of disk SG and MC for 5 stands 
randomly selected from the excluded 25 are presented 
in Figure 3.3 and 3.4. We can see from the figures 
that additional information for one response variable 
significantly improved the prediction of the other response 
variable using Eq. [13] compared to the plug-in-predictors. 
The curves are closer to their observed values for both disk 
SG and MC using the Eq. [13] predictor. Table 3.5, presents 
the root mean square prediction error (RMSPE) for the 
three prediction methods based on predictions of SG and 
MC for trees from the 25 excluded stands. Prediction from 
multivariate approaches, both plug-in-predictor and Eq. 
[13], was considerably better than those of the univariate 
approach. Prediction based in Eq. [13] were improved by 29 
(SG) and 26 % (MC) (Table 3.5). 

DISCUSSIon

Nonlinear mixed models are an important tool for modeling 
and predicting growth and wood quality attributes in 

óh

yh = fh (β, b, Ah, Bh)-Bhb
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