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aBSTRaCT

Eastern cottonwood (Populus deltoides Bartr. ex Marsh.) has been 
artificially regenerated throughout the Mississippi Delta region because of 
its fast growth and is being considered for biofuel production.This paper 
presents a mixed-effects height-diameter model for cottonwood in the 
Mississippi Delta region. After obtaining height-diameter measurements 
from the plot/stand of interest, a mixed-effects model can be calibrated 
often improving height estimates relative to an uncalibrated fixed-effects 
model. When using an independent validation dataset, the calibrated 
mixed-effects height-diameter model vastly improved height predictions 
compared to a completely fixed-effects model. When using only one tree 
in calibration, bias decreased from -1.1164 m to -0.1334 m while the 
mean square error (MSE) decreased from 2.3421 to 0.4869 for the fixed-
effects and mixed-effects models, respectively. When using three trees 
in calibration, the bias and MSE were reduced to -0.0495 m and 0.3012. 
The use of three trees in model calibration will likely provide a reasonable 
compromise between predictive ability and field sampling times.

INTRODUCTION

Height-diameter models are an integral component of 
forest inventories and in many cases reduce sampling 
times. Using diameter (D) to predict height (H) has long 
been implemented since D is more efficiently measured 
than H yet the two are strongly correlated. Mixed models 
are becoming a popular modeling tool to provide more 
site specific predictions. Many regionwide mixed model 
equations have been fit that can then be calibrated for local 
site conditions. When compared to the traditional means 
of developing local H-D equations, where H and D are 
measured and then a separate equation is fit for a tree, plot, 
stand, or tract, a mixed-effects model analysis is efficient 
because a model can be calibrated without having to 
statistically fit a model and thus even small sample sizes can 
be used (since degrees of freedom are not a concern).

Both linear and nonlinear mixed models have been used 
to model the H-D relationship for many species including 
loblolly pine (Pinus taeda L) in the southeastern US 
(Trincado and others 2007, VanderSchaaf 2008), cherrybark 
oak (Quercus pagoda Raf.) in the Western Gulf (Lynch 
and others 2005), and stone pine (Pinus pinea L.) in Spain 
(Calama and Montero 2004). Mixed-effects models provide 
an efficient means to obtain cluster-specific, or for this 
particular example, plot-specific, parameters through the 

a MIXED-EFFECTS HEIGHT-DIaMETER 
MODEL FOR COTTONWOOD IN THE 
MISSISSIPPI DELTa
Curtis L. VanderSchaaf and H. Christoph Stuhlinger

Forest Modeler, Minnesota Department of Natural Resources, Grand Rapids, MN 55744, Arkansas Forest Resources Center, University of 
Arkansas at Monticello, Monticello, AR 71656.

prediction of cluster-specific random effects. For example, 
total tree height (H) can be predicted as a function of 
diameter at breast height (D):

lnHki = β0+ β1lnDki +εki    [1]

Where:
ln--natural logarithm,
Hki--total tree height (m) of tree i for plot k,
Dki--diameter at breast height (cm) of tree i for plot k, 
β0, β1--parameters to be estimated, 
εki--random error where it is assumed ε ~N(0, σ2I).

Equation [1] provides what is often termed a population-
average estimate of H for a given D. The parameters β0 and 
β1 are assumed to be fixed, or that the parameter estimates 
apply to every experimental unit (e.g. every tree) in a 
population. Whether trees are located in North Carolina 
or Arkansas, the parameter estimates are assumed to be 
correct. However, plot-specific characteristics such as soil 
type, nutrient status, elevation, aspect, competition from 
herbaceous vegetation, genetic stock, etc., may result in 
the parameters differing across plots. Thus, specific plots 
may have what are generally termed “random parameters” 
in mixed-effects model terminology. Equation [1] can 
be altered by adding plot-specific random effects to the 
population-average parameters to produce plot-specific 
parameters:

  lnHki = (β0+u0k)+(β1+u1k)lnDki + εki  [2]

Where:
u0k, u1k--are plot-specific random effects, assumed to be N(0, 
σ2

0) and N(0, σ2
1), respectively, 

(β0+u0k)--plot-specific intercept,
(β1+u1k)-- plot-specific slope, 
and all other variables as previously defined.

Additionally, a covariance, σ01, can be assumed to exist 
between u0k and u1k. Linear mixed-effects models, in this 
particular case, produce an efficient estimate of plot-specific 
parameters because only six parameters are estimated 
using the model fitting algorithm (β0,β1,σ

2
0,σ

2
1,σ01,σ

2). 
Based on the variance and covariance estimates, plot-
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specific random effects (u0k, u1k) can be predicted and then 
added to the population-average intercept and slope (β0, 
β1) estimates to obtain plot-specific parameter estimates. 
Plot-specific random parameter estimates produce a more 
localized H-D equation since the random effects account 
for local site conditions such as soil type, genetic stock, 
site preparation, mid-rotation silvicultural practices, spatial 
and time-specific climatic conditions, etc. The prediction of 
plot-specific random effects is conducted outside the model 
fitting algorithm and thus degrees of freedom are not lost. 
A less efficient means of obtaining plot-specific parameter 
estimates would be to estimate parameters separately for 
each plot. 

Although the parameter estimation efficiency of mixed 
models is an advantage, often the greatest advantage is 
the ability to calibrate the model using data independent 
of those used in model fitting. Hence, for trees obtained 
from plots not in the model fitting dataset, plot-specific (or 
stand-specific) H-D relationships can be produced if H and 
D observations have been collected from trees in that plot 
(or stand).
 
Eastern cottonwood (Populus deltoides Bartr. ex Marsh.) is 
a fast-growing tree species (Cooper 1990) and has recently 
been one of the most widely artificially regenerated tree 
species in the Mississippi Delta region. It has several 
commercial uses including pulpwood and a strong 
consideration as a species of choice for biofuel production. 
The objectives of this paper are to present a mixed-effects 
individual tree H-D model for cottonwood established in the 
Mississippi Delta region and to demonstrate how this model 
improves height predictions for an independent cottonwood 
validation dataset.

METHODS

DaTa USED IN MODEL FITTING
Observed H-D pairs were obtained from a study site 
occupying about 3 ha located on the University of Arkansas 
Pine Tree Branch Experiment Station in St. Francis County, 
AR (Stuhlinger and others 2010). The soil is a Calloway silt 
loam and the site was previously used as row cropland. See 
Table 1 for summary information of the data used in model 
fitting.

STUDY DESIGN aND LaYOUT 
The study design was a replicated randomized complete 
block consisting of six blocks that contained nine plots of 
randomly assigned cottonwood clones. Each plot contained 
56 trees in a seven x eight tree layout. The interior 30 
trees (five x six tree layout) were measured, leaving an 
unmeasured buffer around each measurement plot.

STUDY ESTaBLISHMENT 
The site was sprayed prior to planting using applications 
of Goal® (oxyfluorfen) and Roundup® (glyphosate) to 
control weeds. Each planting row was sprayed with a 
liquid fertilizer prior to planting at a rate of 112 kg per ha 
of nitrogen. The site was then bedded (51-cm high beds) to 
facilitate furrow irrigation. 

Cottonwood cuttings were planted by hand at a 3.1 x 3.1 
m spacing in March 1996. Disking, herbicide spraying, 
and hand weeding continued for two years after the initial 
planting. Irrigation with well water was conducted each 
year whenever a 5-cm rainfall deficiency was reached. 
Deficiencies occurred on average five times per year, 
resulting in about 8 to 10 ha-cms of irrigation water per 
year.

Nine cottonwood clones were tested, two from Texas 
(S7C15 and S13C20), five from Stoneville, Mississippi 
(ST72, ST124, ST148, ST163, and Delta View (mix of the 
four ST clones)), and two hybrids of eastern cottonwood and 
black cottonwood (Populus trichocarpa Torr. and Gray) from 
the northwestern U.S. (49-177 and 1529). 

Poor survival forced the complete replanting of five 
cottonwood clones (S7C15, ST72, ST148, ST163, and Delta 
View) in Spring 1997. This resulted in two separate groups 
of clones: replanted clones, which grew 9 years, and non-
replanted clones, which grew for 10 years. Measurement 
data for the two groups were combined when estimating 
parameters of equations [1] and [2]. Total tree height and 
DBH (ages 3, 5, 10 for the non-replant cohort and ages 4 
and 9 for the replant cohort) were measured for all surviving 
trees.

MODEL DEVELOPMENT aND PaRaMETER 
ESTIMaTION
Prior to model fitting, all trees with broken and leaning 
stems were removed from the analysis. Observations were 
also checked to ensure that the H-D relationships were 
biologically reasonable (Figure 1) and that errors in data 
recording and translation to a computer file were not made 
(e.g. the elimination of an H of 4 m and a D of 45 cm).

Parameters of equations [1] and [2] were estimated using 
SAS Proc MIXED (Littell and others 1996) which assumes 
random errors are normally distributed and subsequently 
estimates parameters using maximum likelihood. Rather 
than simply assuming β0 and β1 were random across 
plots, likelihood ratio tests were conducted and Akaike 
Information Criterion (AIC) values were examined to 
determine if assuming β0 was random, β1 was random, and 
if assuming a covariance term existed between u0k and u1k 
(σ01), produced better model fit statistics. For this analysis, 
since the reduced models are nested within the full model, 
a Likelihood ratio test is appropriate (Schabenberger and 
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Pierce 2002; pgs. 547, 557). Under the null hypothesis, the 
test statistic is assumed to follow a χ2

df distribution where 
df is the difference between the number of fixed-effects 
parameters in the full and reduced models and hence the 
critical value also differs at an level of 0.05. 

In many cases random effects account for nearly all 
autocorrelation among observations when using longitudinal 
datasets (Trincado and Burkhart 2006, VanderSchaaf and 
Burkhart 2007); however, a modeler can also directly 
model the random error structure. Within-cluster temporal 
correlation was ignored because it is assumed these models 
will be calibrated using temporary plot data or at a particular 
point in time for plots that are repeatedly measured. 
Hence, for this analysis, each measurement age of a plot 
is considered a separate plot. When estimating parameters 
in a mixed-effects model framework it is important to 
consider that the measurement intervals may not be the 
same among the model fitting and prediction/validation 
datasets - this can cause problems because a covariance 
structure that is appropriate for the model fitting dataset 
may not be appropriate for the model prediction/calibration 
dataset. Additionally, no attempt was made to model spatial 
correlation among trees to reduce complexity when users 
apply this model. For this particular study, the random error 
covariance-variance matrix was assumed to be σ2Ink.

DaTa USED IN MODEL VaLIDaTION
To quantify if model calibration of equation [2] produces 
superior height estimates relative to equation [1], an 
independent validation dataset was used (Table 1, Figure 
1). Heights and Ds were obtained from a cottonwood 
study adjacent to the study used in model fitting. However, 
unlike the model fitting dataset, the validation data study 
site was not irrigated. A previous report demonstrated that 
irrigation resulted in substantially different growth patterns 
(Stuhlinger and others 2010), thus observations from 
the unirrigated study can be considered an independent 
dataset from that used in model fitting. Besides the lack 
of irrigation, the only difference in terms of study design, 
layout, and establishment between the two datasets was that 
the unirrigated study plots were subsoiled prior to planting 
and the liquid nitrogen fertilizer was injected 51 cm below 
the soil surface.

MODEL VaLIDaTION
Validation of equation [2], firstly, consisted of randomly 
sampling various numbers of trees from each plot to predict 
plot-specific random effects for the validation dataset. 
Secondly, the predicted plot-specific random effects 
were then added to the population-average parameters 
(as estimated using the model fitting dataset) to produce 
predicted plot-specific random parameters of the validation 
dataset. After obtaining predicted plot-specific parameters, 
equation [2] and equation [1] (an entirely fixed-effects 
model) were used to predict height for all trees not used in 

calibration of equation [2]. To provide a more conservative 
comparison between equation [1] and equation [2] for 
various model calibration sample sizes, for those trees used 
in calibrating equation [2], it is assumed that those heights 
are also known when calculating model validation statistics 
for equation [1]. 

Validation analyses follow those presented in Trincado and 
others (2007). The difference between the observed (Hobs) 
and predicted height (Hpred) of all trees whose heights were 
predicted for each individual plot (k), age (j), and replication 
(r – as explained below, for each plot, age, and sample size 
combination 10 random selections were conducted) was 
calculated for both equations (ekjri = Hobskjri - Hpredkjri). 
For each plot (k), age (j), and replication (r) combination, 
the mean residual (emean) and the sample variance (v) of 
residuals were computed and considered to be estimates of 
bias and precision; respectively. An estimate of mean square 
error (MSE) was obtained for each equation by combining 
the bias and precision measures using the following 
formula:
 
MSEkjr = [emeankjr]

2 + vkjr    [3]

Values of MSE were compared between equations [1] and 
[2] to determine which model produced better estimates 
of height for this particular cottonwood validation dataset. 
It is well known that logarithmic transformations in many 
cases help to linearize data and produce homogeneity of 
variances; however, a transformation bias occurs since 
additive errors in log-log models become multiplicative 
when transformed back to the original scale. To account 
for the transformation bias, the procedure recommended by 
Baskerville (1972) was used:

lnHki = β0k + β1k lnDki + σ2/2   [4]

Where:
σ2 -- mean square error (or residual variance) from the 
model fit (0.02365 for equation [1] and 0.00429 for equation 
[2], see Table 2).

For equation [1], β0k = β0 and β1k = β1 for all k; respectively. 
All validation statistics presented in this paper are based on 
untransformed errors.
 
The numbers of trees randomly selected from a particular 
plot for a certain age to be used in calibrating equation 
[2] were 1, 2, 3, 5, and 10. These sample sizes represent 
practical numbers of trees to be measured while conducting 
field inventories. To ensure that bias, variance, and MSE 
measures between the varying number of randomly selected 
trees are coherent (for example, if a plot only contains 4 
trees, it cannot be used in model calibration for sample sizes 
of 5 and 10), only those plots that contained at least 20 trees 
at a specific age were selected. Hence, measuring 10 trees 
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per plot would involve measuring at a minimum half of all 
trees in a plot. For those plot ages selected, the number of 
trees per plot varied from 20 to 29. 

It should be noted that, in practice, predicted random 
effects for a particular plot and age are statistics themselves 
(and thus each predicted plot-specific random effect has a 
sampling distribution for a particular sample size) and can 
vary depending on what trees from a particular plot were 
used in model calibration. Similar to Trincado and others 
(2007), to capture variability among potential random 
effects predictions for a particular plot, age, and sample size, 
for each model calibration sample size trees were randomly 
selected 10 times. When calculating model validation 
statistics, all 10 samples for each model calibration sample 
size from each of the 39 plot observations were averaged 
(resulting in one MSE, emean, and v observation for each 
plot and age combination – or 39 observations). The average 
of these 39 observations was then calculated for each sample 
size to compare among model equations. To ensure that 
the specific trees selected for a particular model calibration 
sample size were coherent, the tree used to calibrate 
equation [2] for a particular plot and age when using a 
sample size of one was also used to calibrate the model for a 
particular plot and age when using a sample size of two, and 
so forth.

For the case where all tree heights were predicted using 
equation [1], there was no need to conduct 10 separate 
replications. The emean, v, and MSE were calculated for 
each of the 39 plots and then these observations were 
averaged. 

RESULTS aND DISCUSSION

Based on the model fitting results (Table 2), it is best to 
assume that both β0 and β1 are random (or, essentially, that 
each plot (or stand) has their own intercept and slope) and 
that a covariance (σ01) exists between u0k and u1k. 

VaLIDaTION RESULTS
As the number of trees used in model calibration increased 
(Mixed-Effects model – equation [2]) the three validation 
statistics decreased in magnitude (Table 3). For the 
fixed-effects model (equation [1]), the most conservative 
comparison between the mixed- and fixed-effects results 
are when any tree used in model calibration is also assumed 
to have been measured when simply using the fixed-effects 
model. Else, how do you know whether the calibration 
statistics are better due to model calibration or because 
some of the trees in the plot had heights actually measured. 
For all nc, the mixed-effects model MSE was at least 78 
percent less (ranging from 78 percent to 87 percent) than the 
corresponding fixed-effects model MSE. 

In some cases, individuals may predict heights for all trees 
within a plot (or use equation [1] to predict heights for 
every tree in a plot). For this case, it is correct to compare 
the fixed-effects model MSE when using a nc = 0 (MSE 
= 2.3421) to all mixed-effects model MSEs. For all nc, 
the mixed-effects model MSE was at least 79 percent less 
(ranging from 79 percent to 92 percent) than the fixed-
effects model MSE.

In terms of choosing an optimal model calibration sample 
size, a reasonable trade-off between statistical measures 
(precision and accuracy) and sampling times appears to be 
three trees. Calama and Montero (2004) recommended using 
four trees for stone pine. Sample sizes of 5 and 10 trees do 
improve statistical measures but will require substantially 
more sampling time, especially measuring 10 trees. Even 
the use of only 1 tree in calibration substantially improves 
height estimates. Similar results were observed by Calama 
and Montero (2004) and Trincado and others (2007).

CONCLUSIONS

A mixed-effects H-D model for cottonwood in the 
Mississippi Delta region was presented. By obtaining 
H-D measurements from plots/stands of interest, Equation 
[2] can be calibrated to local site conditions. When using 
an independent validation dataset, the calibrated H-D 
model (equation [2]) was shown to vastly improve height 
predictions compared to an entirely fixed-effects H-D model 
(equation [1]). Large increases in the predictive ability 
of equation [2] were observed when using only 1 tree in 
calibration; however, the use of 3 trees in model calibration 
will likely provide a reasonable compromise between 
predictive ability and field sampling times.
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Table 1—Tree-level summary statistics of eastern cottonwood plantings 
at the five ages used in model fitting and the four ages used in model 
validation. Std. dev. is the standard deviation. For the model fitting 
dataset, data were obtained from a total of 54 plots (six blocks x nine 
clones). For the model validation dataset, data were obtained from 39 plot 
observations (plots had to have at least 20 trees for a particular sampling 
age – if a plot was included at age 3, it was not necessarily included at 
age 5). n is the number of trees

 

 
Model Fitting Dataset 

      D (cm)   H (m) 

Age n   Min Mean Max 
Std. 
dev.   Min Mean Max 

Std. 
dev. 

3 496  2.2 9.1 13.4 1.82  4.1 7.9 15.0 1.34 
4 504  1.3 9.5 15.7 2.77  2.0 8.0 12.0 1.79 
5 420  2.8 14 19.1 2.14  4.6 11.1 14.0 1.18 
9 492  2.5 17.1 28.4 4.1  4.7 15.8 21.1 2.68 
10 371   9.9 19 30.5 3.57   8.8 15.9 21.5 2.57 
            

Model Validation Dataset 
      D (cm)   H (m) 

Age n   Min Mean Max 
Std. 
dev.   Min Mean Max 

Std. 
dev. 

3 304  2.2 7.5 11.3 1.62  3.4 6.2 9.9 1.03 
4 246  2.3 7.4 12.2 1.97  3.5 5.8 7.9 0.98 
5 160  4.6 11.9 15.2 1.78  6.2 8.9 11.1 1.12 
9 182   4.6 12.1 17.7 2.1   5.5 10.1 12.8 1.27 
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Table 2—Population-average (β0 and β1) and random effects variance (σ2
0, σ2

1) and covariance (σ01) parameter 
estimates. Where: -2LL -- twice the negative log-likelihood (smaller is better), aIC -- akaike’s Information Criterion 
(smaller is better), σ2 -- estimated mean square error. Critical values for Full versus Reduced model analyses at an 
alpha level = 0.05 are: 3 df -- 7.81, 2 df -- 5.99, 1 df -- 3.84, where df is the number of fixed effects in the Full model 
minus the number of fixed effects in the Reduced model. For instance, when comparing the FULL model to the 
Fixed-Effects model the df = 6 – 3 = 3, since estimates of σ2

0, σ2
1 , and σ01 are required for the FULL model. There 

were a total of 2283 observations used in model fitting and the total number of clusters (plots) was 133

 

 
 
 
 
 
 
 
 
 
 

  Fixed-Effects   Random β0   Random β1   Random β0, β1   FULL  
  Est SE   Est SE   Est SE   Est SE   Est SE 
β0 0.3311 0.0199   1.0381 0.0238   0.9723 0.0163   1.1566 0.0276   1.2410 0.0448 
β1 0.8123 0.0078  0.5298 0.0069  0.5483 0.0090  0.4820 0.0101  0.4524 0.0159 
               
σ2

0 - -  0.0337 -  - -  0.0450 -  0.1808 - 

σ2
1 - -  - -  0.0050 -  0.0051 -  0.0215 - 

σ01 - -  - -  - -  - -  -0.0541 - 
               
-
2LL -2054.0   -4914.1   -4782.1   -5004.2   -5111.1  
AIC -2052.0   -4910.1   -4778.1   -4998.2   -5103.1  
σ2 0.02365     0.00516     0.00551     0.00461     0.00429   

 
 

Table 3—Model validation summary statistics when using varying numbers of 
trees randomly selected from the model validation dataset to calibrate equation [2]. 
The Fixed-Effects model is equation [1]. a total of 39 plot and age combinations 
were used. To eliminate the dependence of the model validation statistics on one 
random sample, for each calibration sample size (nc) and plot and age combination, 
trees were randomly selected 10 times

 

 
  Fixed-Effects model   Mixed-Effects model 
nc Bias (m) Variance MSE   Bias (m) Variance MSE 
0 -1.1164 0.6558 2.3421   - - - 
1 -1.0693 0.6961 2.2488  -0.1334 0.2565 0.4869 
2 -1.0245 0.7290 2.1531  -0.0689 0.2408 0.3602 
3 -0.9787 0.7599 2.0591  -0.0495 0.2301 0.3012 
5 -0.8862 0.8010 1.8688  -0.0324 0.2084 0.2483 
10 -0.6588 0.8069 1.3994   -0.0193 0.1620 0.1804 
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Figure 1—The top figure depicts the height-diameter relationship by measurement age for the model 
fitting dataset (n = 496 for age 3, n = 504 for age 4, n = 420 for age 5, n = 492 for age 9, n = 371 for 
age 10). The bottom figure depicts the height-diameter relationship by measurement age for the model 
validation dataset (n = 304 for age 3, n = 246 for age 4, n = 160 for age 5, n = 182 for age 9). 

 

 


