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Abstract 

The southern pine beetle (SPB) causes significant damage (tree mortality) to 
pine forests. Although this tree mortality has characteristic temporal and spatial 
patterns, the precise location and timing of damage is to some extent unpredictable. 
Consequently, although forest managers are able to identify stands that are 
predisposed to SPB damage, they are unable to avoid damage entirely. Instead 
they must manage this uncertainty using risk assessment tools. This chapter 
discusses the development and utility of these tools for managing the SPB.
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22.1.  Introduction
The southern pine beetle (Dendroctonus 
frontalis Zimmermann) (SPB) is the most 
destructive pest of Southeastern U.S. pine 
forests. The SPB is estimated to have caused 
$900 million worth of direct economic damage 
between 1960 and 1990 (Price and others 1998) 
and other less tangible effects to watershed, 
ecological, and sociological forest functions. 
Southern pine beetle damage has a characteristic 
spatial and temporal pattern that makes risk 
assessment an important tool for management. 
Periodic outbreaks comprise large numbers of 
discrete infestations (contiguous patches of 
tree mortality) that cause localized damage to 
some forest areas but not others. In addition, the 
location and timing of SPB infestation are to 
some extent unpredictable. These characteristic 
patterns of damage ensure that some forest 
managers will be affected by the SPB while 
others may not.

The values attributed to forest products and 
function, the spatial and temporal patterns 
of SPB damage, and the unpredictability of 
damage form the central ideas of this chapter 
and key concepts involved in a discussion 
of SPB risk. Another major theme of this 
chapter is that risk assessment (the process of 
estimating and communicating risk) is part of 
a larger decisionmaking process that should 
allow practical and effective forest management 
decisions to be undertaken. The scale of the SPB 
problem, including the geographic range of the 
SPB and the number of different stakeholders 
it affects, suggests that estimates of risk should 
be readily interpretable and communicable to a 
wide variety of forest managers and for diverse 
management goals. The following section 
objectively defines risk and its interpretation 
based upon these concepts.

Estimating and managing SPB risk requires an 
understanding of the interaction between the 
SPB and measurable properties of the forest. 
Over many decades, foresters have reported 
the common association of dense pine stands 
and slow tree growth with SPB outbreaks. 
Such observations have gradually developed 
into a more objective, scientific study of the 
interaction between the SPB and the forest. 
This chapter reviews this scientific literature, 
with the aim of identifying consistent factors 
that indicate SPB risk. Here the primary focus 
is to address the following, basic questions: 

 

1.  Which silvicultural, climatic, or biotic 
factors lead to an increased likelihood of 
SPB damage?

2.  Given this information, how much SPB  
damage is likely to occur in a particular 
location during a given timeframe?

3.   How readily can this scientific literature be 
interpreted, communicated, and used for 
effective decisionmaking?

The interpretability and communicability of 
risk represents a difference between ecological 
research designed to investigate risk factors 
and the dissemination of these results to 
practicing forest managers. One measure of 
the success of SPB risk research is the extent 
to which scientific results are used in practice. 
Accordingly, the chapter concludes by assessing 
how results from the current scientific literature 
have been transformed into state-of-the-art, 
decisionmaking tools.

22.2.  What is Risk?
Everyday definitions of risk involve two 
fundamental concepts: damage (or loss) and 
uncertainty. For example, Webster’s dictionary 
defines the noun, “risk”, as “possibility of loss 
or injury”, and suggests several synonyms 
including hazard and threat. For scientific or 
procedural purposes, a more precise definition 
of the term, risk, is useful. This extra precision 
is important for a number of reasons:

1.	 It enables risk analysts and managers to 
effectively communicate with each other 
and understand how estimates of risk 
have been calculated, what risk estimates 
actually mean, and how they can be used to 
aid decisionmaking. 

2.	 A clear, unambiguous definition serves as a 
useful paradigm for guiding the collection 
of data and designing analyses to assess 
risk.

A common and widely adopted scientific 
definition of risk is that it is a quantification of 
expected damage (or loss) defined in time and 
space. In a variety of risk assessment fields, the 
concept of risk is further defined in terms of 
two principal components: the probability of an 
adverse event occurring and the damage caused 
by this event. For forestry applications risk has 
been defined as:

Risk = Pa x Ad			    (1)
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where Pa is the probability of an adverse event 
occurring and Ad is the amount of damage caused 
by the event (Bredemeier and others 2000, Mott 
1963). For example, the total risk from the SPB 
to a unit area of forest can be conceptualized 
as the probability of the area becoming infested 
and (or multiplied by) the amount of damage that 
is likely to occur as a result of this infestation. 
Despite the simplicity of this framework, it 
should also be noted that more work is needed 
in order to use it to assess risk practically. For 
example, both the probability of an adverse 
event occurring (Pa) and the damage caused by 
an event (Ad) need to be defined precisely in 
time and space dimensions. In the case above, 
definitions and units would need to be provided 
for the spatial extent of a stand (e.g., 1 ha), the 
temporal scale of the analysis (e.g., 1 year), 
and measurement of damage (number of trees 
killed). These definitions ensure that the results 
of the risk assessment are scaleable (can be 
applied to different temporal or spatial scales), 
comparable to risk estimates for different areas 
or observations, and therefore interpretable.

Unpredictability is clearly a key concept 
for defining risk and also presents one of the 
biggest challenges to understanding exactly 
what risk is. Fundamental to this issue is the 
differentiation of risk and uncertainty. Haimes 
(1998) delineates risk and uncertainty as 
follows:

“Risk refers to a situation in which the potential 
outcomes can be described in objectively known 
probability distributions. Risk is a measure of 
the probability and severity of adverse effects. 
The term, uncertainty, refers to a situation 
in which no reasonable probabilities can be 
assigned to the potential outcomes. Uncertainty 
is the inability to determine the true state of 
affairs of a system.”

For the SPB, both the probability of an infestation 
occurring (Pa) and the damage caused by an 
infestation (Ad) are unpredictable. However, 
this unpredictability can be represented by 
objectively defined probabilities or probability 
distributions. This probabilistic approach 
conforms to an intuitive understanding of risk 
—although it may not be possible to predict the 
occurrence of an event exactly, it can be defined 
(summarized) well enough that it becomes 
useful for decisionmaking.

22.2.1. Risk Assessment
Risk assessment is the process of estimating 
and communicating risk. It is argued that risk 

estimates, or indices, are ultimately a decision 
support tool, and that the risk assessment 
process should involve an understanding of 
specific decisionmakers and their outstanding 
risk assessment questions.  Equation 1 defines 
risk using two components that are both 
probabilistic (conceptually at least). Since 
risk assessment is primarily used in situations 
where future events are unpredictable, fully 
formulated, explicit indices of risk should 
use probability distributions to describe the 
likelihood of damage occurring. For example, 
one might calculate as a risk output or index 
a probability density function that summarizes 
estimates of SPB-induced tree mortality for a 
specified time period and spatial unit. 

However, in practice this is not always 
technologically possible, and more implied 
estimates of risk might be appropriate. For 
example, either one of the components of 
equation 1 could be used as a risk estimate. In 
this case, the risk endpoint implies risk rather 
than describing it explicitly. For example, 
deterministic values that represent the average 
amount of damage or loss that might occur in 
the future, or categorical and relative measures 
of the likelihood of an event occurring (e.g., 
high, medium, or low risk) might also be more 
feasible, or appropriate, implied indices of 
risk. In all cases, the success of a risk index 
is dependant on a strong definition of what it 
actually means. 

Risk assessments are usually required to be 
procedurally straightforward. For example, a 
forester might assess risk by measuring certain 
properties of a stand, enter these variables 
into a risk model, and obtain an estimate of 
risk. However, irrespective of the accuracy of 
the model, the utility of the risk assessment 
also depends on the cost and inconvenience 
of collecting the necessary variables. In other 
words, risk models intended for practical 
applications need to balance predictability 
with ease of collecting the data required by the 
model (Lorio 1980b). 

The output of risk assessments should also 
address questions most relevant to a forester. 
For example, models that provide categorical 
and relative outputs of risk (high, medium, or 
low) provide useful information for determining 
which areas of the landscape are more likely to 
suffer damage, and therefore identify where 
risk reduction methods (e.g., thinning) should 
be prioritized. They are unable, however, to 
determine whether a risk reduction method 
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is actually beneficial based on a cost/benefit 
analysis. Similarly, forest managers might want 
to rescale risk outputs according to the amount 
of land that they currently manage and a 
timeframe that is most appropriate to them. For 
example, one landowner might be interested 
in the expected losses occurring within a 50 
ha parcel over a 10-year period, while another 
might be interested in losses for a 100 ha plot 
over a 20-year period. Feasibly, both questions 
can be addressed using the same basic pieces of 
information (i.e., the conceptual model outlined 
in equation 1), but only if this information is 
scaleable (appropriate spatial and temporal 
units are included) and easily interpretable (the 
meaning of risk indices are well defined).

It can be concluded that risk assessment and 
the development of practically useful risk 
models and indices is subtly different from 
ecological research. Nevertheless, ecological 
understanding of the factors that predispose 
forests to the SPB is essential for providing 
effective and reliable risk assessment models. 
The other essential components of the risk 
assessment process are:

1.	 Identification of outstanding and important 
risk questions

2.	 Development of data collection methods 
and models capable of addressing these 
questions

3.	 Communication of well-defined, easily 
interpretable risk outputs

Section 22.3 critically reviews the current 
research into which stand and site variables 
predispose forests to the SPB. This review 
focuses upon research that provides models 
and summaries that directly address SPB risk. 
Section 22.3 concludes with a summary of how 
versions of these models are used to provide 
effective SPB decision support tools.

22.3.  A Review of SPB Risk 
Assessment
It is possible to assess SPB risk at a variety of 
spatial or temporal scales. For example, the 
focus of an assessment might be an individual 
tree, an individual stand, or a specific region 
(e.g., national forest, county). Similarly, at each 
of these spatial scales, risk might be reported 
for any given time frame (e.g., a month, a year, 
50 years). It can be seen that these scales are 
hierarchical, such that identifying individual 

tree risk should allow one to calculate stand 
risk, which in turn could be used to calculate 
regional risk. In large part, the spatial and 
temporal scale at which risk is reported should 
be driven by specific, practical management 
questions. However, reporting the spatial and 
temporal dimensions of risk outputs is an 
important component of any assessment and 
allows results to be readily interpreted and 
rescaled for different units of time and space. 

Three major trends stand out from the current 
risk assessment literature. The first is that 
most studies concentrate on the spatial scale 
of the risk to a stand of trees. This is probably 
driven by the fact that data collected for SPB 
risk assessment is often the result of a practical 
requirement to visit infested stands, and 
because stand level measurements are the basic 
building blocks of forestry. Second, current risk 
models usually infer a measure of the likelihood 
that a stand will become infested during an 
outbreak, given the current silvicultural and 
environmental condition of the stand. As such, 
relatively few models deal with the damage 
that can be expected following an infestation, 
yet this is clearly an important component of 
overall risk (see equation 1). Third, current risk 
models most often report relative, categorical 
outputs of risk; for example, high, medium, or 
low. Correctly interpreted, these outputs allow 
forest managers to identify which stands are 
more likely to be infested than others, but do not 
provide absolute estimates of damage or losses. 
Categorical estimates of risk are subjective— 
high risk from one study may not be equivalent 
to that of another—and are difficult to interpret 
for different spatial or temporal scales than 
used in the original study.

The following sections present a detailed 
and critical review of the current SPB risk 
assessment literature. A number of terms, 
including risk, hazard, and susceptibility, are 
commonly used throughout this literature. For 
the purposes of this review, they are all treated 
as indices of risk irrespective of the terminology, 
but will be discussed in terms of the three main 
trends outlined above and their consequences 
for forest management. In other words, the aim 
of the review is to organize and critique current 
risk models according to the component of 
risk they attempt to represent, the spatial and 
temporal scales for which the measurement is 
most relevant, and the utility of the risk outputs 
for risk management. This review is also limited 
to studies that directly attribute stand and site 
variables to any of these indices rather than 
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studies that detail key ecological information 
about the SPB but cannot be directly used to 
assess risk. 

22.3.1. Stand Level Risk
Infestation Probabilities
A number of researchers have developed 
models that attempt to determine stand and site 
characteristics that predispose stands to SPB 
damage. Although differences in methodology 
make it difficult to directly compare the results 
of these models, tree vigor (represented by 
measurements of basal area and radial growth), 
landform, and soil characteristics are key 
components to all these models. Disturbance 
of the stand (lightning, mechanical damage, 
or wind disturbance) is also shown to be 
positively associated with infestations (Daniels 
and others 1979, Hedden and Belenger 1985, 
Ku and others 1980a). Tables 22.1 and 22.2 
provide a list of models (discriminant analysis 
and logistic regression methods respectively) 
and the stand variables that contribute to 
SPB damage. It should be noted that most 
researchers provide a variety of models with 
different complexities that explore how the 
predictive accuracy of the models is affected by 
the inclusion or exclusion of certain variables. 
This process is useful because in practice, 
certain stand variables may be unavailable or 
difficult to measure. As previously discussed, 
risk assessment involves more than finding the 
most predictive combination of stand variables; 
it must also address the practical ease with 
which variables can collected. 

Although an understanding of the factors that 
predispose stands to the SPB is an important 
qualitative output from the risk literature, 
in isolation it may not lead to fully informed 
decisionmaking. A complete decisionmaking 
process requires knowledge of the correlation 
between stand level variables and infestation 
incidence. For example, in practice it is 
important to understand how changes in a 
stand variable (for example, basal area) might 
affect the likelihood of SPB damage. This 
would allow a manager to address whether risk 
reduction methods are worthwhile. Is the cost 
of a treatment or management action offset 
by its benefit? This information is provided 
by an evaluation of the predictive ability of a 
particular risk model. Interestingly, the SPB 
literature highlights a major dichotomy in this 
understanding. Some researchers claim up to 
80 percent predictive accuracy of their models. 
However, others report that infestations 

occur in less than 5 percent of even high-
hazard stands. The resolution to this apparent 
inconsistency lies with the methodologies used 
to collect the data to assess risk. Understanding 
the reasons for this dichotomy is important for 
interpreting the results from these stand-level 
infestation models and for developing future 
risk assessment methodologies.

Modeling the factors that predispose stands to 
SPB damage requires two essential pieces of 
information:

1.	 Stand and site measurements for infested 
stands

2.	 Site and stand characteristics of stands that 
did not become infested

Without both pieces of information, logical, 
scientific methods cannot be developed that 
assess the probability of infestation occurrence. 
A fundamental problem for SPB researchers 
is that forests ecosystems are extensively 
managed (there are lots of forest to inventory), 
and forestry activity (hence the potential for 
measurement and inventories) tends to be 
focused around areas that have a current SPB 
problem. In other words, for the SPB (and 
many other disturbances), there is a natural 
tendency to make detailed observations about 
forest conditions only if a problem occurs. 
Accordingly, three different methods for 
sampling (obtaining details for both infested 
and uninfested stands) the forest might be 
proposed:

1.	 Delineate a complete, contiguous area of 
forest (for example, a national forest) and 
build stand and infestation inventories for 
all stands.

2.	 Collect information for all infested stands 
and an equal number of randomly selected 
noninfested stands.

3.	 Sample a given number of stands by 
selecting them randomly from a larger 
forested area.

Each sampling method has advantages and 
disadvantages, and also affects the methodology 
required to analyze data and interpret the results. 
Methods 1 and 2 have both been used by SPB 
researchers to construct risk models, and it is 
the difference between these methodologies 
that leads to difficulties in interpreting the 
predictive ability of the resulting risk models. 
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Author 
(location) Model

 
Notes 

Kushmaul and 
others (1979) 

DS = 2.33550 – 0.01906 (PINEBA) + 0.01484 (RAD) – 0.00829 (UNDER) – 
0.00613 (SOIL) – 1.71662 (BARK). 

73% accuracy for infested plots and 
75% for uninfested plots 

Louisiana, 
Mississippi, and 
Texas Gulf Plain

DS < –0.13514 = Infested N = 35 

(15 infested and 20 noninfested 
plots) 

DS = 3.06135 – 0.018342 (PINEBA) – 0.00705 (AGE) – 0.00002 (DENSITY) – 
0.00880 (SITE) – 0.04085 (TOTALBA) 

Correctly classified 80%of the 
infested and 70% of the uninfested 
plot subsets DS < –0.12736 = Infested 

DS = 0.93080 – 0.02004 (PINEBA) + 0.01827 (RAD) Correctly classified 93%of the 
infested plot subset, 65% of the 
uninfested subset. DS < –0.12917 = Infested 

Where: SOIL = Surface Soil Depth 

PINEBA = Pine Basal Area (ft2/acre) BARK = Bark thickness (cm) 

TOTALBA = Total Basal Area (ft2/acre) DENSITY = Stand Density (stems/
acre) 

AGE = Age of Pines (years) SITE = Site Index ( base age 50) 

RAD = average 10 year radial growth 

UNDER = Understory % 

Ku and others 
(1980a, 1980b) 

DS = -1.50 (TOTALBA) + 3.3 (AGE) + 64.3 (RAD) + 0.93 (HARDBA). 75% accuracy

Arkansas DS > 100  = Low susceptibility Nsubset =268  

1 < DS < 100  = Medium susceptibility 

DS < 1  = High Susceptibility 

Where: HARDBA = Hardwood Basal Area (ft2/
acre) 

TOTALBA = Total Basal Area (ft2/acre) RAD = Average Radial Growth in cm 
(10yr) 

AGE = Stand Age (years) 

Porterfield and 
Rowell (1980 
unpublished) 

DS = 1.02559 - 0.00043 (VOLUME) + 1.33776 (SAW) - 2.14726 (BARK) + 
0.01878 (RAD) + 0.03205 (SLOPE) - 0.00791 (PINEBA) 

79% accuracy

Texas to Virginia DS < 0.0442  = Infested N = 1021

547 infested and 474 uninfested 
plots 

74% accuracy 

Nsubset = 119 

(69 SPB-infested, 50 noninfested) 

Where: RAD = 10 years radial growth (mm 
breast height) 

VOLUME = Total Volume in ft3  (> 4.6 
inches DBH) 

SLOPE = Ground Slope (%) 

SAW = pines > 9.6 ft3 as proportion of 
VOLUME 

PINEBA = Proportion of total BA in 
pine 

BARK = Average Bark Thickness 
(nearest 0.1 inch) 

Table 22.1—Discriminant Analysis Models for Stand Risk Rating (continued on next page) 
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Method 2 has been the most commonly used 
sampling methodology for SPB research, 
probably because it requires the least sampling 
resources. For example, Kushmaul and others 
(1979) used discriminant analysis to classify 
whether a stand became infested based on site 
and stand characteristics. The resulting model 
was then tested on an independent subset of 
the data (data not used to build the model) to 
determine the number of times that the model 
correctly predicts the fate of a stand based on 
its characteristics (predictive ability). For this 
study, the models yielded prediction accuracy 
of 70-80 percent, suggesting that the model 
is very good at determining which stands are 
likely to become infested. Consequently, a 

naïve, practical interpretation of these results 
suggests that stands with certain characteristics 
are very likely to become infested by the SPB. 

Closer inspection suggests this conclusion is 
not valid. First, the model classifies stands as 
either infested or noninfested—two choices. It 
follows that one would expect to get 50 percent 
of classifications correct purely by chance. A 
70 percent or an 80 percent classification has a 
different practical interpretation if compared to 
a null model of 50 percent accuracy. However, 
the most serious interpretative problem with 
sampling method 2 is that the data (and model) 
misrepresents the ratio of infested vs. uninfested 
stands occurring within the forest. Even during 
SPB outbreaks, the landscape comprises many 

Author (location) Model Notes 

Daniels and others (1979) P = 1/ (1 + e –(-8.599 + 0.044 (BA) + 3.309 (PINEBA)) ) Undisturded non-plantation stands

(unknown location) 

P = 1/ (1 + e –(-9.998 + 0.088 (BA) + 4.801 (PINEBA)) ) Disturbed non-plantation stands

Where: No goodness of fit specified

P = Probability of infestation

BA = Total Stand Basal Area

PINEBA = Proportion of total Basal Area in Pine

Zarnoch and others (1984) P = 1/(1 + e [4.900 - 0.030 (AGE) - 0.004 (SIZE)])

(Central Louisiana) 

Where: No goodness of fit specified

P  = Estimated probability of SPB infestation over 8 years

AGE = Age of Substand 

SIZE  = Size of Substand (Acres)

Table 22.2—Logistic regression models for determining infestation probabilities of stands

Author 
(location) 

  Model Notes 
 

Hicks and  
others (1980) 

DS = -0.51161(BT) + -0.51526(PBA) + -0.40455(AH) + 0.17528(LAF) 
+ 0.13538(SI) +  0.17002(ADBH) +0.12525(RGI)+ 0.18884 (TSD)+ 
0.10389(SST) +  0.10514(SUBST) + 0.08937 (WR) + 0.07829 (HBA) 

79% Accuracy

Unknown DS classification 

Where: HBA = Hardwood basal area

BT = Bark Thickness ( cm ) SI = Site Index (m)

PBA = Pine basal area (m2/ha ) SST = Surface Soil Texture

RGI = Radial growth Increment (last 5 
years) 

TSD = Topsoil Depth

LAF = Landform SUBST = Subsoil Texture

AH = Average height (m ) WR = Water regime

ADBH = Average DBH (cm) 

Table 22.1 (continued)—Discriminant Analysis Models for Stand Risk Rating 
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more uninfested stands than infested ones, and 
this affects the interpretation of the results. 
Interpreted correctly, these results suggest 
that if infested and uninfested stands are pre-
selected from the landscape in equal numbers, 
the predictive accuracy of the model is 70-80 
percent. This interpretation (which is correct, 
given the data and the analysis) does not actually 
address a practically useful risk assessment 
question. A more appropriate question, and one 
that can be used to make effective decisions, 
should directly address the probability that a 
stand with given attributes becomes infested in 
a given time period. 

Other researchers have identified and addressed 
the problem of uneven sampling with updated 
analyses. For example, Hicks and others (1980) 
used a discriminant analysis and estimates 
of the sampling bias between infested and 
uninfested stands to determine actual infestation 
probabilities for stands with different attributes. 
In addition, the logistic regression methodology 
reported by Daniels and others (1979) and Reed 
and others (1982) uses a methodology designed 
to overcome these sampling problems. 
However, although analyses can be modified to 
account for unrepresentative samples, outputs 
will always be sensitive to the relative sampling 
frequency of infested to uninfested stands. The 
methodology of Mason and Bryant (1984) 
provides the most obvious solution to this 
problem by delineating entire portions of the 
landscape and collecting data for all stands—
sampling methodology 3.  Although not without 
its own problems (for example, the expense of 
data collection and determining an appropriate 
spatial scale for a study), the advantage of this 
method is that it encourages regular, ongoing 
inventories of the forest useful for assessing 
risk to any forest disturbance agent. In the 
near future, remote sensing may provide more 
efficient and detailed forest measurements and 
help overcome some of these problems and 
solve a fundamental problem for SPB risk 
assessment.

Table 22.3 shows infestation probabilities   
calculated by a number of researchers. In 
summary, these rates are between 0.01 and 5 
percent even for high-risk stands. For example, 
Hicks and others (1980), using data from 
East Texas between 1975 and 1977, estimate 
infestation probabilities less than 0.01 (1 
percent) even for stands with high basal areas 
(>27 m2/ha). Daniels and others (1979) report 
slightly higher infestation rates during an 
outbreak in 1975 (undisclosed location), but for 

stands with a basal area between 20 and 35 m2/
ha still only estimate infestation probabilities of 
between 0.01 and 0.02 (1-2 percent). Reed and 
others (1982), estimate year by year infestation 
probabilities for East Texas ranging from 
0.0043 to 0.0479 (0.4-4.8 percent) between 
1966 and 1976 (note that parts of East Texas 
were under permanent outbreak conditions 
during this period). These estimates are based 
on methodologies that account for biases 
in sampling, and suggest that even during 
outbreak years the probability that any single 
stand will become infested is relatively low, 
even if the stand has attributes that predispose 
it to an infestation.  The estimates in Table 
22.3 are also scaleable in time and space. In 
other words, they can be used to estimate, 
for a typical outbreak year, the total risk for a 
collection (ownership parcel) of any number of 
stands. If outbreak frequency data are included, 
then they can be used to estimate the likelihood 
of an infestation occurring for any spatial 
extent and for any time period (for example, 
the harvest cycle of a stand—see section 
22.3.2). It should also be noted that although 
low infestation probabilities may reduce the 
perceived problems (risk) caused by the SPB, 
when these numbers are rescaled for entire 
forests comprising many stands and extended 
time scales, these probabilities become much 
more significant. 

In addition to providing practical risk 
information, it is argued that the magnitude 
of the probabilities in Table 22.3 conforms to 
current knowledge of the SPB. It is generally 
believed that the SPB most readily attack and 
infest stressed and weakened trees. This stress 
might be caused by a number of factors; for 
example drought, mechanical damage (Hedden 
and Belenger 1985), lightning strikes (Coulson 
and others 1999b, Flamm and others 1993), 
or flooding. In addition, it is clear that these 
potential hosts will only become infested if 
they can be successfully located by beetles 
(Paine and others 1984). Finally, any weakened 
and successfully attacked tree must be close to 
other potential hosts (others subject to stress) 
if a multi-tree infestation is to develop. So, 
ecologically, the occurrence of infestations may 
involve the co-occurrence of a number of fairly 
rare events. Mathematically low probability 
events multiply to produce even lower 
probability events, facts that may be important 
for assessing the predictive success of these 
models. It is therefore probably not surprising 
that the predictive accuracy of these models is 
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low. The resolution of forest data is driven by 
the practical difficulties of measuring extensive 
forest ecosystems—it is difficult to account for 
every tree in the forest. In addition, the small 
size and cryptic behavior of the beetle make it 
difficult to measure, yet its presence or absence 
is undoubtedly the most important factor that 
contributes to an infestation occurring (Paine 
and others 1984). Arguably, models based 
on aggregate, stand-level data should not be 
expected to be highly predictive. And from 
a risk assessment perspective, researchers 
should be reassured that even small amounts 
of extra information (predictive accuracy) 
can contribute to effective decisionmaking 
if it is objective, logically sound, and easily 
interpretable. 

Infestation Growth Risk Models
Assessing the probability that a stand will 
experience an infestation is one component 
of stand-level risk. The expected amount of 

damage caused by an infestation completes a full 
assessment. The ultimate size of an infestation 
is driven by the potential for spot growth, which 
in turn may be driven by stand, site, and climatic 
variables similar to those that drive the initiation 
of infestations. But as Daniels and others (1979) 
point out, causal relationships important in the 
initiation of outbreaks (infestations) may be 
different from those involved in the subsequent 
spread of outbreaks (infestations).  However, 
like infestation dynamics, the growth and 
ultimate size of infestations are to some extent 
unpredictable. The goal of spot growth models, 
especially for risk assessment, is to understand 
the relative importance of various site factors to 
spot growth and to estimate the losses likely to 
accrue in a stand that has become infested.

In contrast to assessments of stand infestation, 
there have been fewer studies on the growth 
or sizes of infestations. This is puzzling, since 
the data required to model infestation growth 
should comprise mostly information (excepting 

Author  Location, Year Infestation 
Frequency 

Units Basal Area or Risk 
Range 

Lorio and others 
(1982)

Kisatchie National 
Forest, Louisiana

13.4 Infestations per 1000 ha High risk

6.8 Medium risk

3.2 Low risk

East Texas, 
1973-1978

9.9 Infestations per 1000 ha Very High risk

5.8 High risk

3.9 Moderate risk

2.7 Low risk

1.8 Very Low risk

Hicks and others 
(1980)

East Texas, 1975 0.002 Infested area/Total Host Area All host types

1976 0.004 All host types

1977 0.002 All host types

All Years by BA 0.000 Probability of infestation per ha 0.0 -9.2 (m2/ha)

0.000 9.3-18.4 (m2/ha)

0.001 18.5-27.5 (m2/ha)

0.001 >27.5 (m2/ha)

Daniels and others 
(1979)

Unknown, 1975 0.008 Probability of infestation 
(Undisturbed stands)

11.48 (m2/ha)

0.014 22.96(m2/ha)

0.023 34.4 (m2/ha)

0.037 45.93 (m2/ha)

0.015 Probability of infestation 
(Disturbed stands)

11.48 (m2/ha)

0.048 22.96 (m2/ha) 

0.131 34.4 (m2/ha)

0.313 45.93 (m2/ha)

Table 22.3—Summary of stand-level infestation probabilities during outbreaks
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the role of beetle immigration and emigration) 
collected solely within infestations rather than 
for the entire forest area. It could also be argued 
that infestation growth and tree mortality are 
ultimately responsible for economic or other 
losses. In East Texas, the working definition of 
an infestation is 10 trees, but some infestations 
may grow to become three or four orders of 
magnitude larger. Understanding the factors 
that drive infestation growth determines overall 
stand damage. This level of understanding 
is more important for some risk assessment 
questions than for others. For example, over 
regional scales, a large number of infestations 
may occur. In such cases, the variability of 
within-stand damage may average out such that 
average infestation size becomes a meaningful 
concept. In contrast, for small private foresters 
who have incurred a single infestation, there 
may be considerable motivation to understand 
the amount of damage that might occur should 
a stand become infested.

Hedden and Billings (1979) used data collected 
over 3 years in East Texas to develop a model 
that was highly predictive in assessing the fate 
of infestations (Table 22.4). The model uses the 
number of active trees at first visit to determine 
the probability that an infestation will contain 
fewer than 20 active trees after 30 days. They 
also developed a model to estimate the number 
of trees killed per day as a function of the initial 
number of infested trees at the first visit, total 
basal area, and the total number of infestations 
detected for that year (Table 22.4). From a 
sample size of 62 spots, this equation gave an 
R2 value of 77 percent. The model suggests that 
the total number of infestations in the landscape 
has a large effect on infestation growth. All 
other things being equal, spots showed different 
expansion rates for different years, with three 
times as many trees killed per brood during a 
severe outbreak year than during the collapse of 
an outbreak. Models without this variable failed 
to account for differences in the aggressiveness 
of spot growth for different years. 

One potential criticism of this study lies in the 
use of initial infestation size (number of trees 
killed at first visit) to predict spot growth. It 
could be argued that if an infestation has grown 
large relatively quickly, then by definition it 
is situated in a stand suitable for spot growth 
and more likely to continue growing large. The 
interpretation provided by the authors is that 
the initial size of the infestation is important 
because it reflects the size of the resident beetle 
population available to sustain spot growth 

without dependency on immigration from 
surrounding infestations. It should also be noted 
that this difficulty arises largely as a result of the 
time lag between the initiation of an infestation 
and spot detection through changes in the color 
of foliage (Billings and Kibbe 1978)—another 
characteristic of the system that contributes to 
difficulties studying SPB.

Reed and others (1981) used the same data as 
Hedden and Billings (1979) to develop a new 
model (Table 22.4) that explained 77 percent 
of the variability of spot growth. Extending 
the work of Hedden and Billings (1979), they 
coupled this with a model that estimates the 
probability of an infestation becoming inactive 
after 30 days. These two equations can be used 
to simulate and predict ultimate spot size. At 
the beginning of the simulation, the growth 
equation can be used to predict the size of the 
spot after 30 days. The second equation can 
then be used to determine if, after this time 
period, the spot is predicted to remain active. 
To simulate an infestation over any period, the 
procedure is repeated for as long as the spot 
remains active.

Schowalter and Turchin (1993) addressed 
some of the problems of the delay between 
infestation initiation and measurements of 
spot growth by introducing beetles to stands to 
control for the timing of infestation initiation 
and initial beetle population size. Their main 
conclusion is that the pine basal area of the 
stand significantly influenced the growth of 
the infestations. More specifically, they found 
that tree mortality was significantly related to 
the average nearest pine distances of the stand, 
and the number of trees killed in each stand was 
highly variable. In all cases, introduced beetles 
attacked trees in the stand, but sometimes these 
attacks were unsuccessful and did not lead to 
infestation growth. 

In addition to simple statistical models, 
mechanistic population models have been 
developed that explore the interaction between 
stand characteristics and infestation growth. For 
example, the Arkansas Spot Dynamics Model 
(Stephen and Lih 1985) takes basic information 
about the location, silvicultural characteristics 
of the stand, and the conditions of a current 
infestation (counts of infested trees) to project 
average growth of the infestation. Validation 
of the model using data from 70 infestations 
suggested that predictions after 90 days are 
subject to a 13.3 percent error. Currently, the 
model is in the process of being validated 
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using a much larger data set and further 
developed to allow it to be easily distributed to 
forestry professionals. 

Another SPB spot growth model, 
TAMBEETLE, has been developed and 
described by Coulson and others (1989). This 
model differs from the Arkansas model in that 
it is a spatially explicit, stochastic model of 
population dynamics. Conceptually, the model 
tracks beetle populations within each tree using 
temperature-driven growth, fecundity, and 
survival rates, and simulates the emergence 
and reemergence of the within-tree beetles, and 
using this information evaluates the probability 
that attacking beetles will be numerous enough 
to overcome the defenses of neighboring trees. 
Note that this process is conceptually very 
similar to the one suggested by Reed and others 
(1981), except that it accounts for much more 
biological detail (especially the relationship 

between temperature and population processes), 
incorporates known mechanistic submodels, 
and runs on a time-step of 1 day instead of 
30 days. Currently, the major problem with 
TAMBEETLE is that there are no published 
reports that detail the accuracy of the model. 

22.3.2. Regional Scale Risk 
Assessment
The previous sections reviewed models that 
could be used to analyze risk at the scale of 
individual stands. In most of these studies, 
data were obtained for a single outbreak and 
for a particular region where the outbreak 
occurred. Southern pine beetle outbreaks 
can be conceptualized as having a frequency 
component (how often outbreaks occur within 
a region) and a severity component (how many 

Table 22.4—Summary of simple spot growth models

Author  Model 

Hedden and Billings 
(1979)

Probability that an infestation will contain < 20 trees after 30 days = 

1 / (1+exp(-11.13 +3.53 loge (AT))

Trees killed per day =

 -1.78627 + 0.02475(IAT) + 0.02765(TBA) + 0.14229(POP)

Where: 

IAT  = Number of trees under attack at first visit

TBA  = Total Basal Area in m2/ha and the total number of   

        infestations detected for that year 

POP  = Total number of surrounding infestations in the   

         landscape 

Reed and others 
(1981)

Probability of spot becoming inactive (next 30 days) = 

1 / (1 + exp(-1.04 + 0.06AT)) 

Natural logarithm of trees killed per day =  

TK/D = 3.435 + 0.965 loge (AT) – 2.847 (loge DBH) – 22.137 (TBA/DBH2) + 0.0736 (TBA) + 
0.558 (POP)

Where:

TK/D  = Predicted natural logarithm of trees killed per day

AT  = Natural logarithm of the number of attacked trees at the start  

       of the simulation period

DBH  = The mean DBH of the stand (cm) at the start of the year

TBA  = Total basal area of the stand (m2/ha) at the start of the year

POP  = Number of spots per 405 ha (1,000 ac) of host type for the  

        entire region during the year being examined 

AT  = Number of affected treed at the beginning of a 30-day 

       period.
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stands were infested as a result of that outbreak). 
So if strictly interpreted, because they are likely 
to be driven by the severity of that outbreak, 
infestation probabilities (and probably to some 
extent spot growth—see section above) are 
specific to a particular outbreak in a particular 
region. If all SPB outbreaks had the same 
frequency and severity, regional-scale risk 
would not be important. But empirical evidence 
suggests that this is not the case. Figure 22.1 
shows the frequency of outbreaks across the 
range of the SPB, and it is possible that the 
severity of outbreaks also varies considerably 
across the range of the SPB. These patterns 
of outbreaks may be driven by factors such as 
climate, host availability (including the number 
of high-risk stands), and the structure (e.g., 
fragmentation) of the forested landscape. 

The factors that contribute to regional SPB risk 
have added importance because of large-scale, 
human-induced changes in both climate and the 
state of the forest. For example, climate change 
may affect the range of both the SPB and its 
hosts, thus exposing new forest stakeholders 
to SPB risk. In addition, the forest is becoming 
more fragmented. This fragmentation concerns 
the physical juxtaposition of forest patches 
but also parcels of ownership and permeation 
by humans (Riiters and Wickham 2003). 
Physical fragmentation may directly affect SPB 
population dynamics, the initiation and growth 
of infestations, and ultimately the pattern of 
SPB damage, while ownership fragmentation 

may also be significant because it has the 
potential to affect an individual’s interpretation 
of damage. For example, consider how a 100-
tree mortality event might affect an individual 
who owns 1,000 trees vs. an individual owning 
10,000. In the first case, 10 percent of a forest 
manager’s trees (potential income) are lost, 
whereas in the second case only 1 percent are 
lost. It follows that the interaction between 
the pattern of SPB damage—including and 
especially the unpredictability of mortality—
and pattern of forest ownership is an important 
factor for SPB risk research. 

Regional-scale risk assessment requires an 
understanding of how climate, forest, and other 
relevant factors affect the larger scale spatial 
and temporal patterns of SPB damage. For 
example, quantifying the effects of regional 
climate and vegetation patterns on the severity 
and frequency of SPB outbreaks would 
allow extrapolation of stand-level infestation 
probabilities for any region of the SPB range 
and may also be important for assessing risk in 
the light of regional changes in forest structure 
and composition. Similarly, an understanding 
of the contagion of infestations would allow 
stand-level infestation probabilities to be 
estimated throughout the course of an outbreak, 
based on the location of a focus stand relative to 
existing infestations.

Most regional risk studies have focused on 
the effects of climate change. For example, 

Figure 22.1—Frequency of SPB outbreaks by county between 1960 and 2000.
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Gumpertz and others (2000) use a logistic 
regression  analysis  to investigate the frequency 
of infestations in North Carolina, South Carolina, 
and Georgia. A number of regional-scale forest, 
physiographic, and climatic variables were 
used in the model, including estimates for the 
volume of timber grown in the county (pole 
timber and sawtimber); the proportion of habitat 
classified as xeric, mesic, or hydric; a number 
of average climatic variables for the county; 
the amount of land in one of five ownership 
classes; and three locational parameters: mean 
elevation, latitude, and longitude. The model 
accounts for and found significant spatial and 
temporal autocorrelation effects, suggesting 
that the locations of outbreaks in the previous 
year were good predictors of where outbreaks 
were likely to occur in the next year. Because of 
the large number of explanatory variables used 
in the analysis, the coefficients of the model 
are probably unable to provide conclusive 
information about which of these is most 
important. However, validation of the model 
based on 5 years of new data successfully 
predicted the occurrence of outbreaks and non-
outbreaks 64 percent and 82 percent of the 
time, respectively. Furthermore, the authors 
argue that many of the independent variables do 
have some ecological relevance. For example, 
the amount of sawtimber in a county was 
considered a more useful explanatory variable 
than the amount of pole timber because the SPB 
preferentially attacks larger, more mature trees.

Gan (2004) performed regional-based risk 
assessment that explores the influence of 
selected county-level variables on total SPB 
damage. A panel data approach was used to 
model the proportion of timber killed in each 
county of the Southern United States over a 23-
year period. Since the main focus of the work 
was to investigate the effects of climate change 
on beetle distribution and SPB risk, all but one 
of the independent variables used were related 
to current or lagged weather measurements. The 
model provided a good fit to the data (an R2 of 
97.5 percent), and suggests that both current and 
lagged weather variables are important factors 
that contribute to SPB damage. The author 
concludes that SPB risk might be increased 
by an average of 2.5 – 5 times for a range of 
predicted climate change scenarios. 

22.3.3. Risk Models in Practice
One measure of the success of risk models is 
the extent to which they are actually used to 
aid practical decisionmaking. This criterion is 

not absolute (conceivably, poor models might 
prove useful for extended periods before 
their problems are realized). However, risk 
assessment is a practical process, and as many 
authors have noted (Kushmaul and others 
1979), for a model to be practically useful, it 
must attain a balance between predictive ability 
and the amount of effort required to obtain 
the inputs (information) necessary to produce 
outputs. A review of current, procedurally used 
models (and who uses them) may indicate 
appropriate levels of detail relevant for different 
user groups, and identify characteristics that 
lead to utility.

One of the most common, practical uses of stand 
risk models is to help allocate Federal funds in 
cost-share programs that offer financial rewards 
to foresters who engage in good management 
practices. For example, in East Texas, thinning 
operations qualify for cost sharing if (among 
other factors) landowners own between 10 and 
5,000 acres and if stands have greater than 70 
percent loblolly, shortleaf, or slash pines, and 
two risk models are also used to determine 
qualification for cost-share programs. The 
first is a Texas Forest Service-defined grid 
(approximately 8.5 x 8.5 km cells) covering 
East Texas that rates geographically driven SPB 
risk (TFS uses the term Hazard) as Very Low, 
Low, Moderate, High, or Extreme (see Figure 
22.2). Billings and others (1985) describe the 
methodology used to develop these grid block 
ratings, which are periodically updated to reflect 
changes in the forest landscape. A stand must 
be located in a Moderate, High, or Extreme 
Hazard stand in order to qualify for cost-share. 
The second model is site-specific and based on 
basal area and landform. If these conditions are 
met and the stand is reduced to no more than 
80 square feet per acre (approximately 18.5 m2/
ha), then owners can claim up to $75 per acre 
for precommercial thinning or $50 per acre for 
pulpwood first thinning to offset the costs of 
the operation (Texas Forest Service document 
TFS 3/06/5000 should be consulted for more 
details). 

Similar cost-share programs are administered 
by states across the range of the SPB. The aim 
is to provide incentives to individuals to reduce 
hazard across broad landscapes. The two-step 
evaluation process used by the Texas Forest 
Service suggests that risk is conceptualized as 
a property of both the local area that a stand 
is situated in, based on analysis of the forest 
landscape and past infestation history, and 
the potential for damage based on measured 
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characteristics of the specific stand. Both 
models have strong ties to the scientific risk 
literature but have also been presented in a way 
that makes them easy to use and understand. For 
both the Texas Forest Service and small private 
foresters (nonindustrial private foresters) who 
use the model, the goal and purpose of the risk 
analysis is very clear: to determine whether a 
stand reaches a predetermined risk criteria that 
qualifies it for Federal dollars. Irrespective of 
its predictive accuracy, it could be argued that 
the benefit of this model is that it facilitates 
effective communication between landowner 
and the Texas Forest Service, which in turn 
leads to efficient decisionmaking. 

During outbreaks, especially on Federal lands 
where full-time foresters are available, the 
focus of SPB management turns to the control 
of infestations rather than prevention. While 
infestation probabilities may be relatively small 
(see previous section), the scale of the forest 
landscape ensures that large numbers of spots 
may be detected in relatively short periods of 
time. So as an outbreak develops, the net result 
is an overwhelming number of infestations, 
often in remote areas. In addition, the extended 
time periods between outbreaks may result in 
foresters with limited SPB experience or expert 
knowledge having to visit, assess, and ultimately 
make decisions about these infestations. These 

Figure 22.2—Map 
of categorical risk in 
East Texas used for 
determining eligibility to 
Texas Forest Service 
cost-share thinning 
program. The map is for 
1996 and derived using 
work outlined in Billings 
and others (1985). 
Ratings from the map 
form the first component 
of assessing eligibility 
for funds (stands must 
be located in at least a 
moderate-hazard block). 
The second component is 
based on a more detailed 
appraisal of a particular 
stand. (Taken from 
document TFS 3/6/5000)
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decisions center on control of infestations, 
salvage of dead timber, and restoration of the 
damaged stands, all of which are dependant 
on future infestation growth. These decisions 
might involve estimates of direct economic 
damage, whether there is a possibility that an 
infestation will grow and cross an ownership 
boundary, presenting possible legal problems, 
or whether the infestation is likely to impact 
especially high value or highly protected trees 
such as red-cockaded woodpecker colonies or 
seed orchards. Under these situations, widely 
distributable, quantitative, and easy-to-use 

infestation growth models provide valuable 
decision support tools. 

Two such models are widely used—the Texas 
Forest Service spot growth model (Figure 22.3) 
and the Arkansas Hog Model. The advantage 
of the former, based on work by Hedden and 
Billings (1979), lies in its simplicity. Using the 
basal area of the stand and the number of actively 
infested trees as the only input variables (both 
rapidly available by observation), it estimates 
the expected number of trees killed after 30 
days. In addition, the model itself is simple to 

Figure 22.3—Excerpt 
from Texas Forest 
Service Leaflet (Circular 
249) describing how 
to calculate risk (spot 
expansion) for stands 
with currently active 
infestations.
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use and easy to distribute to foresters faced with 
active infestations. The limitations of the model 
are that it is specific to East Texas, although 
other models could easily be created for other 
regions, and that it presents a rather simplistic 
approach to estimating the likely trajectory of 
the infestation. The Arkansas Hog Model is by 
contrast a more complex, mechanistic-based 
model of population growth that provides 
estimates of infestation growth for any region 
in the South and can be distributed as a 
stand-alone PC-based or Web-based program 
(Stephen and Lih 1985). Again, inputs to the 
model are relatively simple, easily observable 
site characteristics, and outputs are average 
projections of infestation growth based on a 
validation of the model against independent 
data.

Probably the most ambitious and largest 
practical forestry risk assessment exercise is 
currently being conducted as an ongoing process 
in order to assess risk for the entire contiguous 
United States and Alaska (at a resolution of 1 
km2) and for every major forest pest and disease 
including the SPB. The stated goal of this risk 
assessment, undertaken as an ongoing process 
by the Forest Health Monitoring (FHM) 
Program of the USDA Forest Service, is to 
provide a strategic assessment for risk of tree 
mortality due to major insects and diseases. 
Specifically, one of the major objectives of 
the program is to “construct a risk modeling 
framework such that the resulting products may 
be easily linked with other risk mapping efforts 
(e.g., threat of wildland fire)” and in accordance 
with five general principles:

1.	 An integrative process that includes 
multiple risk models

2.	 A transparent and repeatable risk assessment 
process 

3.	 Scalability allowing risk to be assessed at 
different spatial scales as more data and 
models become available 

4.	 A procedurally efficient and straightforward 
risk assessment process that ensures the 
project is both realistic and provides 
outputs that are readily interpreted by a 
variety of stakeholders

5.	 A standardized approach that allows 
comparisons across geographic regions and 
for different threats

Crucially, the project provides an explicit 
definition of risk based on the principle that any 
forest experiences a background level of tree 
mortality and that levels above this constitute 
unacceptable damage. They define damage as 
follows:

“…our threshold value for mapping risk of 
mortality is defined as the expectation that, 
without remediation, 25 percent or more of 
standing live BA greater than 1 inch in diameter 
will die over the next 15 years (between years 
2005 and 2020) due to insects and diseases.”

Their definition of total risk and the risk index 
that they actually use is:

“…risk is often composed of two parts: the 
probability of a forest being attacked and the 
probability of resulting tree mortality, referred to 
as susceptibility and vulnerability, respectively 
(Mott 1963). Assigning the probability of 
insect and disease activity to specific locations 
requires data that is frequently lacking. 
Therefore, a probabilistic assessment was not 
undertaken for the 2006 risk mapping project, 
and we define risk as the potential for harm due 
to exposure from an agent(s).”

The risk assessment outputs are maps detailing 
the expected basal area loss per 1 km x 1 km 
grid (see Figure 22.4 for the map detailing 
SPB damage). These maps provide a visually 
appealing  overview  for  forest  managers 
interested in the aggregate health of the forest 
from a national, State, or county scale.   The 
upfront definition of risk and the resolution 
of the maps are ideally suited to strategic 
decisionmaking and allow the results to be 
readily interpreted. For example, the maps 
show  potential  for damage based on site 
characteristics rather than full expectations 
of damage. But since the maps are designed 
to show the likelihood of damage over a 15-
year period (a time scale long enough that 
infestations are likely to occur), it could be 
argued that this measure is an effective surrogate 
for actual risk, and the decisionmaking process 
is likely to benefit from this simplicity. 
Although the resolution of the FHM study 
is not designed to be particularly useful for 
individual landowners, eventually the decisions 
made using such outputs are likely to cascade 
down to individual stakeholders. For example, 
the cost-share program discussed earlier 
requires effective decisionmaking in order that 
adequate Federal funds can be allocated to the 
administering States.
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22.4.  Conclusions
Forest management is driven by the value of 
forest ecosystems that can be impacted by a 
number of disturbances, including the SPB. 
Management of the SPB is complicated by its 
wide geographic range and unpredictability, 
and the extensive nature of forest ecosystems. 
This review suggests that it is not possible 
to predict exactly where SPB damage will 
occur, but knowledge exists that can be used 
to identify which areas of the forest are most 
likely to be damaged, and how much damage 
can be expected. The goal of risk assessment 
is to assimilate this knowledge and provide 
outputs that characterize this uncertainty and 
enable forest managers to effectively manage 
the SPB. 

A large body of research has shown that 
certain site and stand characteristics predispose 
trees to attack. These include the silviculture 
of the stand (particularly the density and 
radial growth of trees), damage events (for 
example, lightning, logging damage), and site 
characteristics such as slope and drainage. 
Understanding the role of each factor allows 
management options to be identified that can be 

employed in order to minimize risk. Effective 
decisionmaking also requires estimates of the 
total amount of damage that one might expect 
under different management scenarios. These 
estimates allow an assessment of whether the 
cost of management actions will be offset by 
reductions in risk. They also inform forest 
managers of the potential problems caused 
by the SPB—it could be argued that SPB 
damage is more palatable if risks are known up 
front. One finding of this review is that more 
emphasis is currently placed upon minimizing 
SPB damage rather than providing outputs that 
allow complete risk management. 

During outbreaks, the probability of even high-
risk stands becoming infested is relatively low 
(between 0.01 and 5 percent per outbreak). 
These low infestation probabilities suggest 
that relationships between measurable stand 
conditions and infestation probabilities are 
relatively weak. Models for the growth of 
infestations (i.e., the severity of an infestation) 
are less common, but also suggest inherent 
unpredictability. Explanations for this, and the 
practical consequences for individuals tasked 
with managing the forest, have been discussed 
in previous sections. This unpredictability 

Figure 22.4—Strategic 
map of expected losses 
to SPB over a 15-year 
period at a resolution 
of 1km x 1km. (map 
courtesy of Krist and 
others, in press)
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also has considerable implications for those in 
charge with managing and contributing to the 
risk assessment process. In many ways, this 
unpredictability emphasizes why objective, 
communicable risk assessments are so 
important. It is argued that without organized, 
well-funded approaches to risk assessment, 
individual forest managers are unlikely to 
be able to attain an unbiased, objective, and 
accurate view of SPB risk:

1.	 Outbreaks are periodic and relatively rare, 
so that most individuals will experience 
few during a lifetime.

2.	 Individuals are most likely to gather 
experience and knowledge from 
observations in their own stands. As the 
literature shows, it is inherently possible 
that a poorly managed stand will escape 
SPB damage and conversely that a well-
managed stand will incur damage.

3.	 An objective assessment of risk depends 
upon balanced information of both infested 
areas and those that escaped infestation. 

4.	 The unpredictability of the SPB ensures 
that accurate and objective assessments 
require considerable amounts of data. It is 
unlikely that an average forest manager will 
have the resources to make these unbiased 
observations. 

Considering the unpredictability of the SPB, 
it could also be argued that without these risk 
assessments and the objectivity they provide, 
it would be difficult to formulate effective 
plans for managing SPB damage. For example, 
since the initiation and growth of an infestation 
in one area of the forest may lead to damage 
elsewhere, the SPB is most commonly viewed 

as a problem that affects human communities 
rather than just isolated individuals (Coulson 
and Stephen 2006). Although preventative 
management (e.g., basal area reduction) cannot 
guarantee zero damage, it may considerably 
reduce total damage at the regional scale. In 
other words, although the unpredictability and 
spatiotemporal patterns of the SPB may always 
lead to winners and losers, a community-level 
approach to SPB management can at least  
attempt to minimize the number of individuals 
affected by the SPB. In addition, the SPB is just 
one of many threats to forests. Like the SPB, 
most of these (e.g., fire, hurricane, and other 
biotic agents) are unpredictable and ideally 
suited to risk assessment. As defined in this 
chapter, risk involves not just the pattern of SPB 
damage, but also concepts and quantifications 
of the damage, both economic and sociological, 
caused by the SPB. As human interests encroach 
further into forested areas, they may also affect 
the values attributed to these forests and the 
amount of risk people are willing to accept. 
This is likely to drive increasingly critical 
decisionmaking that involves an objective, 
comparable evaluation of all potential forest 
threats.

These factors make the development of     
objective, scientific SPB risk assessments 
essential. The challenge for ecologists and 
risk assessors is to develop novel models 
and assessments that address the current 
and changing needs of forest managers. 
This depends on continued efforts to collect 
appropriate data, and the development of 
modeling methodologies that assimilate 
this information into useful risk indices and 
decisionmaking tools.  


