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Numerical Details and SAS Programs for
Parameter Recovery of the Sg Distribution

Bernard R. Parresol, Teresa Fidalgo Fonseca, and Carlos Pacheco Marques

Abstract

The four-parameter Sy distribution has seen widespread use in growth-and-
yield modeling because it covers a broad spectrum of shapes, fitting both
positively and negatively skewed data and bimodal configurations. Two
recent parameter recovery schemes, an approach whereby characteristics
of a statistical distribution are equated with attributes of a stand in order

to solve for the parameters of the distribution, are described for the SB.
The first scheme permits recovery of the range and both shape parameters,
but the location parameter must be a priori specified. The second scheme
is an all-parameter recovery model. The details of the parameter recovery
models, that is the system of equations with their concomitant constraints,
are laid out. A solution technique for the constrained parameter recovery
models that uses the Kuhn-Tucker conditions, the Lagrange function, and
the Levenberg-Marquardt algorithm is briefly reviewed. Two Statistical
Analysis System programs that implement the parameter recovery models,
Sg Recovery 3parm and S;; Recovery 4parm, are listed and demonstrated
with instructive examples.

Keywords: Basal area-size distribution, constraint functions, diameter
distributions, moments, nonlinear programming problem, restricted
estimation.

Introduction

Forecasting number of trees in a stand over diameter classes
is customarily done through the use of probability density
functions (PDF). Many distributions have been utilized such
as the beta, Weibull, gamma, and lognormal. Hafley and
Schreuder (1977) examined the skewness and kurtosis of
various statistical distributions as a measure of the flexibility
of the distributions in regard to their changes in shape. They
showed that the four-parameter SB PDF (Johnson 1949, SB
means system bounded) provides greater generality in terms
of skewness and kurtosis than many of the usually applied
distributions in forestry. Based on Hafley and Schreuder’s
findings, many growth-and-yield models that used the Sp
distribution ensued (e.g., Fonseca 2004, Hafley and Buford
1985, Kamziah and others 1999, Kiviste and others 2003,
Lopes 2001, Parresol 2003, Tham 1988, Von Gadow 1983).

A variety of parameter estimation methods are available for
the SB distribution, such as the percentile method, linear
and nonlinear regression methods, moments, and maximum
likelihood. These have been reviewed and compared by
Zhou and McTague (1996) and Kamziah and others (1999).
The state-of-the-art approach for parameter estimation in
growth-and yield-modeling is called parameter recovery
(Hyink and Moser 1983). Parresol (2003) presented a
loblolly pine (Pinus taeda L.) growth-and-yield model
using the Sy, distribution where one parameter of the
distribution was fixed and the remaining three parameters
were estimated in a parameter-recovery context. Parresol’s
new methodology was more general than previous Sp-
based growth-and yield-models which recovered only one
or two parameters (e.g., Newberry and Burk 1985, Parresol
1983, Scolforo and Thierschi 1998). Fonseca (2004) and
Fonseca and others (2009) extended Parresol’s scheme to
create a methodology that completely recovers Johnson’s Sy
diameter distribution from stand variables. The objectives
of this article are (1) to present the details necessary to
implement the three-parameter recovery scheme of Parresol
(2003) and the all-parameter recovery scheme of Fonseca
(2004) and Fonseca and others (2009) and (2) to present and
demonstrate the Statistical Analysis System (SAS) programs
that employ these schemes.

The SB Distribution

Let the random variable D represent tree diameter, and let d
stand for particular values from the range of D. The equation
for Johnson’s Sy distribution for tree diameter is

2 exp —l{y+51n[£ﬂ ,
2m(d - &) E+ - d) 2 Eri-d

fld)= E<d<é+2,0>0,—0<y<mo,1>0,620 b

0 otherwise



It is characterized by the location parameter &, the range
parameter A, and shape parameters ¥ and 0. Although there
is no closed form expression for its cumulative distribution
function, if D ~ Sy (&, A,7,0) then

z=y+8m[(d-&)/(E+A-d)]~vOD @

z being a standard normal deviate. This property means
integration of equation (1), i.e., the Sg PDF, over specific
classes can be accomplished by application of the well-
tabulated standard normal distribution. It is easy to show
that the shape of the distribution of D depends only on the
parameters ¥ and 8. For, defining a new variable

y=fld)=d-5/2 3)

it follows from equation (2) that
2, =y+8Iy/(1-y)]~N(0.1) @

and Y must have a distribution of the same shape as D
(Johnson and Kotz 1970).

Figure 1 shows a number of the possible shapes that the S
distribution can assume. Often stands display a unimodal
shape in the range of tree diameters, as displayed in figure
1A. The first line is a right or positively skewed shape,
which occurs when Y has a positive value. The middle line is
a symmetric shape, like a normal curve, which occurs when
7 is zero. The third line is a left or negatively skewed shape,
which occurs when Y takes on a negative value. Figure 1B
shows other shapes that the Sy distribution can assume.
Uneven-aged stands typically have a reverse-J shape to the
distribution of tree diameters. As seen in the graph, bimodal
shapes are possible with the S distribution, as might occur
with a storm-damaged stand where most of the overstory is
taken out but some large trees survive.

Parameter Recovery

The parameter recovery approach uses stand-average
attributes such as the mean diameter and basal area per

unit area to obtain estimates of the underlying diameter
distribution (Hyink and Moser 1983). The fundamental idea
is to relate characteristics of an assumed distribution (in our
case the SB), such as percentile points or moments, with
attributes of the stand and, thereby, recover the parameters
of the distribution that would yield those exact values.

Put another way, in the parameter recovery method, the
parameters of the distribution function are solved from

a system of equations, equating (measured or predicted)
stand attributes to their analytical counterparts (Kangas and
Maltamos 2000).

Three-Parameter Recovery System

In Parresol (2003) a parameter recovery model for the
range and shape parameters was developed that uses the
median and the first and second noncentral moments of

-—-y=1,0=1
— 7=0,0=1.5
(A) -—-y=-1,0=1

(B) —--7=03,0=05
—7=09,6=05

Figure 1—Johnson S distributions with various values of the y and
6 shape parameters. (A) displays unimodel shapes (right-skewed for
Y = 1, symmetric for y = 0, left-skewed for y = -1). (B) displays a
reverse-J shaped distribution and a bimodal distribution.



the diameter distribution (average diameter and quadratic
mean diameter). The £ parameter is a priori specified.
Parresol showed that the Y parameter could be expressed as
a function of the other three parameters

y=6ln| —* 1 )
(dmcdian - g)
where
d_ .. 1S the median tree diameter or s0th percentile of the

diameter distribution. This allowed for a system of two
equations in two unknowns to recover the range and both
shape parameters.

d=E+2u(y) (6)
B=K N[ & +2E0/(») + P1,(») | ™

where

average stand diameter

basal area per unit area

trees per unit area

units conversion (7/40 000 for metric units

and 1/576 for English units)

w,(y) = first noncentral moment of the distribution of ¥,
and

,u;( y) = second noncentral moment of the distribution of ¥

A =z Wy
[

As mentioned, ¢ is prespecified, A and § are iteratively
solved for using equations (6) and (7), and then ¥ is solved
for using equation (5). For details of the derivation of the
three-parameter recovery model see Parresol (2003).

All-Parameter Recovery System

Fonseca (2004), working with maritime pine (P. pinaster
Aiton) diameter distributions, extended the three-parameter
recovery scheme to create a methodology that recovers

all four parameters of Johnson’s S distribution from

stand variables. In order to recover all the parameters it is
necessary to supplement equations (5), (6), and (7) with an
additional function. The idea behind parameter recovery is
to use values from the statistical distribution that (a) directly
relate to stand characteristics, (b) are quantities that foresters
can understand, and (c) have a meaningful interpretation.
As already stated, the first noncentral moment of statistical
distributions is directly related to average stand diameter,
and the second noncentral moment is readily understood

as quadratic mean diameter, i.e., the tree of average basal
area that we will designate as d,. A paper by Gove and
Patil (1998) gives a meaningful interpretation of the third
noncentral moment of statistical distributions as it relates
to stand diameter. Specifically, understanding arises when
diameter distributions are viewed with respect to tree
basal area (basal area-size distribution or BASD) rather
than to tree frequency. Designating the BASD mean as

d ,, the third noncentral moment of the diameter distribution
is the product of the mean BASD and the square of the
quadratic mean diameter, that is, 1(d) = d, 5 dqz. Using this
property, Fonseca derived the following formula for the
SB distribution:

dyd> =& +38 (N + 3L (N + AR (y)  (B)

Inclusion of equation (8) in Parresol’s (2003) earlier system
allows for the £ parameter also to be recovered. An estimate
of the third noncentral moment of diameter distribution can
be calculated from plot diameters as follows:

n

2.4 ©)

d) ="
n

where

n = number of trees on the plot

For details on the development of the all-parameter recovery
model please refer to Fonseca (2004) and Fonseca and
others (2009).

Procedures for Solving the Parameter
Recovery Systems

The Sy parameter recovery strategies involve solving
complex systems of nonlinear equations. Parresol’s
scheme uses two nonlinear equations in two unknowns and
Fonseca’s scheme is based on three nonlinear equations

in three unknowns. By subtracting the left-hand sides of
equations (6), (7), and (8) we equate the functions to zero.
By squaring the functions we create a system whereby we
can use a nonlinear least-squares minimization routine. A
least-squares problem is a special form of minimization
problem where the objective function (the function to be
minimized) is defined as a sum of squares of other functions
(in our case nonlinear functions).



_lr 2 10
F(x)—z[fl (x)+---+fm(x)] (10)

where

X =(X,%,,... ,xp) is a vector of p unknown parameters
andmz=p

There are several minimization techniques available to solve
for nonlinear systems. The Levenberg-Marquardt (LM)
algorithm is one that works well on many practical problems
and, thus, is a sensible choice.

Levenberg-Marquardt Algorithm

Starting with an initial value vector x (a guess) to the
solution, the LM iterative update formula is (Ralston and
Rabinowitz 1978, page 363)

X=X _(J;Ji +0i1)_1J;fi (1D

where

0 > 0 = a scaling factor
I = an identity matrix, and
the Jacobian at each iteration point X, is

o
1= 5% (12)

X= Xi

The Jacobian is a matrix of partial derivatives. For the three-
parameter recovery system the partial derivatives are given
in Parresol (2003). For the all-parameter recovery system the
partial derivatives are given in Fonseca and others (2009).
The LM algorithm is a blend of gradient descent (also called
steepest descent) and Gauss-Newton iteration. For a detailed
explanation of the LM algorithm and its advantages see
Ralston and Rabinowitz (1978) and Ranganathan (2004).

Global Minimum, Convergence,
and Initial Values

All optimization algorithms converge towards local rather
than global optima. The smallest local minimum of an
objective function is called the global minimum, and the
goal is to find the solution vector that returns the global
minimum of the objective function. For the S parameter
recovery models the absolute minimum of the objective

equation (10) is zero, but the global minimum may be
greater than zero due to constraints imposed on the solution.
From optimization theory (see Avriel 2003), a local
minimizer X satisfies the following three conditions:

1. There exists a small, feasible neighborhood of X that does
not contain any point X with a smaller function value
F(x)< F(X).

2.The vector of first derivatives (gradient) g(X)=VF(X) of
the objective function F' (projected toward the feasible
region) at the point X is zero.

3. The matrix of second derivatives G(X) =V'F (X) (Hessian
matrix) of the objective function F (projected toward the
feasible region) at the point X is positive definite.

One reason for choosing the LM algorithm is that for

6 > 0 the inverse matrix in equation (11) always exists

and condition 3 is always met. Condition 2 gives us a
convenient convergence criterion to stop the iteration of
equation (11) and declare that a local minimizer X has been
found. Termination requires the gradient to vanish, or in
mathematical terms, that the maximum absolute gradient
element be very small, such as

m?x|gj(x(k))| <10’ (13)

Other definitions of convergence can be used. For example,
terminate when the Euclidean distance between parameter
vectors in consecutive iterations is smaller than a critical
value such as 1078, Multiple tests for convergence are
typically used with optimization routines. To check that we
are at the global minimum we need to compute the L; norm

e, = 3| (14)

and verify that it is close to zero. It is a good idea to run
various optimizations with a pattern of different starting
values to check that the global minimum is obtained. If the
optimization routine fails, i.e., condition 1 is not met or
the maximum number of iterations is exceeded, simply use
different starting values.

Initial values are required to start the iteration of equation
(11). Normally information from inventory data is available



to help guide us in choosing good starting values. We

can take the observed minimum and maximum diameters
and use their difference as an initial guess for the range
parameter A. For the location parameter &, a scaler multiple
such as 0.5 to 0.8 of the observed minimum diameter gives
a reasonable initial value. Concerning the shape parameter
0, for bimodal shapes use a starting value < 0.7 and for
unimodal shapes use an initial value > 1.

Parameter Restrictions

To prevent the LM algorithm [equation (11)] from
projecting the parameter vector X into an unfeasible
parameter space, it is necessary to impose restrictions on
the parameters. Constraints on the parameter space can

also prevent unreasonable solutions from occurring. It is
important to note that constraints can be equality restrictions
or inequality restrictions of the form < or >, but not < or >.

Three-parameter recovery system—The constraints are
constructed as follows. From equation (5) we know that

y=0In [/1 /d . —&— 1], and this equation reveals that
A1 (d

median

—-&)>1 to avoid an illegal log argument, thus
d — & < A. As a practical matter the range should be

median
restricted. A reasonable upper bound is 2 x initial guess for
A. By definition of the Sp distribution, 6 > 0. From all this

we have

d . —E< A< 2xinitial A value

median
15)
0<d

Because constraints must be expressed as < or >, we need
to make small adjustments in equation (15). Our final
constraints are

d . —&+0.01< A< 2xinitial A value {16)
0.01<¢o

All-parameter recovery system—For this system we
need both boundary conditions and a linear constraint. In
this system £ is a random parameter. Again, consider the

equation ¥ = 1n [/l / (dme i & - l]. It is obvious that §

must be less than d

edian t0 @void an illegal log argument.

We know that £ cannot be less than zero, hence
0<é<d .. Alternatively, one can use observed

minimum diameter as an upper bound constraint for . The

equation also reveals that 1/ (d__ . —&)>1to avoid an
— & < A. Because & and A

are random parameters, this gives the linear restriction

illegal log argument, thus d

median

E+A>d . . Asbefore we want to restrict the range and
we know that 0 > 0. Gathering all this information gives
0 s §< dmedian
A < 2xinitial A value (17)
0<é
5 + )’ > dmedian
We need to make small adjustments in equation (17)
to create the necessary < and > inequalities. Our final
constraints are
0< 5S dmedian -0.01
A < 2x initial A value (18)

0.01<6
E+A>d +0.01

median

Restricted Estimation

From the previous section we showed that some of the Sy
parameters are subject to boundary constraints and that &
and A are subject to a linear restriction when recovering all
parameters. The Kuhn-Tucker theorem (Avriel 2003, Kuhn
and Tucker 1951) is a theorem in nonlinear programming
which states that if a regularity condition holds and the
objective function F and constraint functions c; are convex,
then a solution X which satisfies the conditions c, for a
vector of multipliers a is a local optimum (a minimum or
maximum depending on the problem). The Kuhn-Tucker
theorem is a generalization of Lagrange multipliers. The
linear combination of objective and constraint functions

L(x,0) = F(x) - Y, a.c.(x) (19)

is the Lagrange function and the coefficients a; are the
Lagrange multipliers. Because of constraints on the
parameters in both recovery systems, we will actually
minimize the Lagrange function [equation (19)], and the
three conditions for a local minimizer X still apply.



Statistical Analysis System Programs

We developed two SAS, version 9.1, programs that utilize
the nonlinear programming Levenberg-Marquardt (NLPLM)
procedure, part of the interactive matrix language (IML)
capabilities of SAS software (SAS Institute Inc. 2004, pages
795-798). The first program, Sy Recovery 3parm, is listed
in appendix A. The second program, SB Recovery 4parm,

is given in appendix B. While the two programs share the
same structure, there are differences in the input needed,

in the makeup of the constraint matrix, and in the system

of equations to be solved. Hence, we felt it would be better
to create two separate programs rather than one program
with dichotomies. It is important to note that the programs
can use either the international system of units (the metric
system) or the English system of units. For input and output
values in the metric system, use the ¥ -value on line 207 of
SB Recovery 3parm (line 206 should start with an * to make
it a comment line) and on line 246 of S Recovery 4parm
(line 245 should start with an * to make it a comment line).
Likewise, for input and output values in the English system,
use the K -value on line 206 of S Recovery 3parm (line 207
should start with an * to make it a comment line) and on line
245 of Sg Recovery 4parm (line 246 should start with an *
to make it a comment line).

Sg Recovery 3parm

This program is designed to input required data through an
Excel® (Microsoft Corporation) file. The file location and
name are specified by the user on line 53 of the program
(see appendix A). The program checks the validity of the
initial values in a “do loop” on lines 254-259. On line 59
the user can supply a descriptive project title that will print
on the top of all printed output from the program. The
amount of printed output is controlled by the options vector
on line 210. The value of the second element of the vector
controls the output from the NLPLM procedure. A value
of zero turns off output. A value of 1 turns on summaries
and iteration history. More output can be generated using
values 2-5, but generally the summary and iteration history
are more than sufficient. See the SAS/IML® 9.1 “User’s
Guide” for more information on the options vector (SAS
Institute Inc. 2004, pages 343-349). The constraint matrix
is initialized on line 238. Lines 261-268 actually set the
bounds for A in the matrix. At the user’s discretion, on

line 263 a smaller or larger upper bound can be specified
for A, but generally 2 x initial value works well. The

NLPLM procedure gives a return code (RC) that indicates
the termination criterion met or the reason for failure. A
positive value indicates successful termination, while a
negative value indicates unsuccessful termination. An RC
= 3 indicates the gradient vanished, that is, convergence as
specified by equation (13) was met. An RC = 7 indicates
convergence based on Euclidean distance. See the SAS/
IML® 9.1 “User’s Guide” for explanations of the 20

RC values (SAS Institute Inc. 2004, page 333) and the
definitions of the various termination criteria used (pages
349-356). The program creates an output file that contains
the label for the observation, the parameter estimates, the
value of the L] norm [equation (14)], a “YES” or “NO”
convergence tag, and the RC from the NLPLM procedure.
The length of the label variable is initialized on line 190 and
can be set to any length by the user. The program prints the
results dataset (line 285), and output is saved to an Excel
file. The file location and name are specified by the user on
line 292 of the program.

Sg Recovery 4parm

This program is also designed to input required data through
an Excel® file. The file location and name are specified by
the user on line 64 of the program (see appendix B). The
program checks the validity of the initial values in a “do
loop” on lines 308-315. On line 70 the user can supply

a descriptive project title that will print on the top of all
printed output from the program. As in the first program,
the amount of printed output is controlled by the options
vector on line 249. Unlike the first program, this program
utilizes the TC or termination criteria vector on line 254.
This vector permits users to control the maximum number
of iterations (first element of the vector) and the maximum
number of function calls (second element of the vector).
The complexity of solving three simultaneous equations
sometimes necessitates increasing these values. The
constraint matrix is initialized on lines 291-293. The upper
bound constraint for £ is set on line 317 and for A on line
319. At the user’s discretion, these upper bounds can be
changed. Like in the first program, the NLPLM procedure
gives a RC that indicates the termination status, and an
output file is generated. The length of the label variable

is set on line 229. The program prints the results dataset
(line 345) and the output is saved to an Excel® file. The file
location and name are specified by the user on line 352 of
the program.



Examples and Discussion

Practical examples of the Sy recovery SAS programs
heretofore described are presented and discussed. The
chosen cases were taken from real stands in a selective
way in order to provide an overall picture of the programs’
implementation and S, flexibility. In the following
examples, stand and tree variable values are expressed in

the metric system.

Sg Recovery 3parm

Figure 2 shows an example Excel® input file with variable
labels in row 1. ID is stand code (character variable), BA
is basal area per unit area (m ha-1), and NT is number of
trees per unit area (trees ha” 1y, SBMEDIAN, SBMEAN,

E3 Microsoft Excel -

and DMIN refer, respectively, to the median, the average,
and the minimum diameter (in cm) of the observed diameter
distribution. IV_LAMBDA and IV_DELTA are the initial
values set for the A and the 6 parameters. Consider the four
observations in figure 2. Let us use this file as input into Sy
Recovery 3parm. The Excel® file output by the program 1s
given in figure 3. As we can see, a convergent solution was
obtained on all four observatlons and the L, norm values
are very small, < 107 (essentially zero) for observatlons
“S1104” and “S1606.” The use of different starting values
resulted in the same solutions confirming that the global
minimums were obtained. Recall that we are using restricted
estimation and we can see in figure 3 that the A values for
“S0204” and “S1906” are at the upper boundary constraint.
This is why the L, norm values are slightly positive.
However, they are sufficiently small as not to cause concern.

Three_parm_input_example.xls

:] Fle Edit View Insert Format Tools Data Window Help Adobe PDF -8 X
| A c C D E F G H =

1 |ID BA, NT SBEMEDIAN |SBMEAN  [DMIN IV LAMBDA [IV DELTA =

2 | 50204 | 12.395562 320 19.65| 21.412500( 11.12 20.84 1.2] =

3 | S1104 | 15.167923 720 17.56| 15394444 480 23.80 1.2

4 | S1606 | 18.009007 280 26.80| 27.035714| 1064 34.36 09

5 | 81906 | 12.819787| 2080 7680| 8289423 240 15.68 09

B v

i <« » nN\INPUT / |< | 3l

Ready

Figure 2—Input file used on Sy Recovery 3parm program (see text for variable labels description).

E3 Microsoft Excel - Three_parm_output_example.xls

‘4] Fle Edt View Inset Fomat Tools Data Window Help Adobe PDF -8 X
A B C D E F G H] =

1 [LABEL [xI  [LAMBDA [GAMMA [DELTA [LINORM |CONVERGE |RC

2 | 50204 | 11.12| 4167000 1.36842] 1.00831| 0.267617|  YES 3

3 | S1104 | 480 16.35537| 044579 0.35293| 1.97E-08]  YES 3

4 | S1606 | 10.64| 33.85450] 0.05795| 063881| 9.50E09] YES 3

5 | 51906 | 240 31.35000] 223179 1.36216] 0.094095] YES B

b v

M < » n)oUTPUT/ < |

Ready

Figure 3—Output file created by Sj; Recovery 3parm program.



Hence, there is no need to change the upper bound
for A for these two observations.

A 0 value < 0.7 generally results in a bimodal shape. For
observation “S1104” we have = 0.35 and ¥ = —0.45 which
should give a decidedly left-skewed bimodal shape, and for
observation “S1606” we have § = 0.64 and ¥ = 0.06 which
should give a slightly right-skewed bimodal shape. The
observed and SB simulated frequencies by 5-cm diameter
classes are shown in figure 4. In part A, for observation
“S0204,” we have a classic right-skewed unimodal graph.
We see in part B (observation “S1104””) a mode at 10 cm
and the second much larger mode (as expected) at 20 cm.
There is a perfect pairing of the observed and simulated
mode locations and the Sg curve gives a good fit to the
observed mode heights. Part C of the graph displays another
bimodal distribution (observation “S1606”") with predicted
modes at 15 and 40 cm. The observed modes occurred at
20 and 40 cm, and though there is some disagreement, the
Sp curve is a reasonable simulation. Statistical distributions
such as the Weibull and lognormal cannot fit such shapes.
Finally, in part D (observation “S1906”), we see a very good
match between the observed and predicted reverse-J

shaped distributions.

(A) S0204
120 1

100 1 AN

80 T

60

40 1

0 7 .

Number of trees

DBH (cm)

(B) S1104

400
350 + JAN
300 +
250 +
200 T
150 +
100
50 A

0 [\ ]

Number of trees

5 10 15 20 25 30 35 40 45 50 ‘

DBH (cm)

5 10 15 20 25 30 35 40 45 50

Sg Recovery 4parm

Let us look at new examples using the all-parameter
recovery system. We will use as input into program Sg
Recovery 4parm the file displayed in figure 5. The additional
variable used as input, labeled SBMUPRIMEZ3, refers to

the third noncentral moment of diameter distribution. The
variable IV_XI is the initial value for the £ parameter (in our
case it was set to 0.8 of observed minimum diameter). The
Excel® file output by the program is given in figure 6. There
are several things to note in the output file. Observation
“S2112” had an unsuccessful termination, the RC = -8

code means maximum number of iterations exceeded. For
observation “S2504” the solution for § occurred on the
lower boundary at 0.01. Figure 7 is a graph of “S2504”

and illustrates that this is not a reasonable simulation. The
solution for observation “S2804” looks good. Notice that
the £ value is at its lower boundary of zero but the L; norm
is very small. The solution for observation “S0406” looks
reasonable but has the largest L norm value of the four
solutions. This is probably due to the value of A being at its
upper bound.

(C) S1606
70 1

60 +
50 t

40 1 [
\

30 1
20 1
10

0

Number of trees

5 10 15 20 25 30 35 40 45 50
DBH (cm)

(D) S1906
1,200 1

1,000 H

800 1 \

600 -1

400 -

200 1 \

5 10 15 20 25 30 35 40 45 50 ‘
DBH (cm)

Number of trees

Figure 4—Observed frequencies and S, simulated distributions using the three-parameter recovery program. (A) Observation “S0204” is a classic
right-skewed unimodal fit. In (B) observation “S1104” and (C) observation “S1606” we see reasonable bimodal fits to the observed frequencies.
(D) observation “S1906” shows an excellent fit to the reverse-J shaped distribution.



E3 Microsoft Excel - Four_parm_input_example.xls

(=13

$d] fle Edt View Insert Format Tools Data Window Help Adobe PDF -8 X
A B C D E F G H | =

1 |ID BA NT SBMEDIAN |[SBEMEAN |SBMUPRIMES [IV X1 [V LAMBDA IV DELTA 3

2 | S2112 | 39398713 520 2960| 30.669231|31115.6217692| 18.56 2574 1.2] =

3 | S26504 | 44.859634| 1200 21.75| 21.255000| 11149.8915500| 10.00 20.00 05

4 | 52804 | 38.357857 920 22.65| 22.680435|12789.9818913| 3.00 35.00 25

5 | S0406 | 37.391770] 1900 14.90| 15.408421| 4284 6042105| B.72 2158 18

B v

M 4 » nNINPUT/ I E3 1l

Ready

Figure 5—Input file used on Sy Recovery 4parm program (see text for variable labels description).

E3 Microsoft Excel - Four_parm_output_example.xls

1 |LABEL X LAMBDA |[GAMMA |DELTA LINORM [CONVERGE |RC
2 | 52112 [25.33575| 11.24027| 006782 0.13779| 0.015456 NO 8 =
3 | 52504 [16.27094] 9.94624| -0.00204 0.01] 0.004346) YES 3|
4 | 52804 0| 47.33625| 0.24323| 2.82539| 0.000732 YES 3
5 | S0406 | 6.83758| 43.16000) 2.81293| 1.91237| 0.032907 YES 3
el ¥
4 <« » »)\OUTPUT/ |< ¥ |
Ready
Figure 6—Output file created by S Recovery 4parm program.
700
600
» 500
[0
(9]
E 400
@)
8 300
£
Z 200
100 \
0 L :
5 10 15 20 25 30 35 40 45 50
DBH (cm)

Figure 7—Observed frequencies and S, simulated distribution for observation
“S2504” using the initial solution of the all-parameter recovery program.




A

Let us do another run of the program. The £ = 16.27 cm
solution for observation “S2504” seems quite large so we
will impose the observed plot minimum diameter of 12

cm as an upper bound. Line 318 of the program is a blank
spacing line. To change the upper bound & constraint for
observation “S2504” we add the following “IF” statement
on line 318: “IF LABEL="S2504" THEN UB_XI = 12.” For
observations “S2112” and “S0406” we will try a different
set of starting values. The updated input file is shown in
figure 8. The output file from this new run is shown in
figure 9. We see that this time a convergent solution

was obtained on “S2112” and the L; norm goes to zero.
The A and 0 values have substantially increased and are
more in line with expectations. Figure 10A shows a good
correspondence between the observed and simulated
distributions. The new solution for observation “S2504” has
a larger L norm (due to the new & constraint), but compare
the graph based on the old solution displayed in figure 7
with the new graph shown in figure 10B. It is obvious that
the new solution, based on imposing observed minimum
diameter as an upper bound constraint on &, gives a superior
fit against the observed distribution. Concerning observation

“S2804” figure 10C indicates a close conformance between
the observed and predicted distribution. For observation
“S0406,” looking at the old | norm value in figure 6

(= 0.03) and the new L norm value in figure 9 (= 0), we see
the original convergent solution was at a local minimum.
The new solution is at the global minimum and is displayed
in figure 10D.

As a final example, let us refit observation “S1104” using
the all-parameter recovery program. The input for this
observation was shown in figure 2 as input for Sy Recovery
3parm. We need to include the value for SBMUPRIME3
which is 5014.2784444. The solution is as follows:
E=6.47538, A = 14.68004, 7 = 0.30239, 5 = 0.26946, and

the L; norm = 1.83 x 102, The observed and simulated
distributions are shown in figure 11. Compared to figure 4B,
we see a much closer correspondence between observed
and predicted frequencies in the 10- and 15-cm diameter
classes. In this instance, the all-parameter recovery solution
provides a better fit compared to the three-parameter
recovery solution.

E3 Microsoft Excel - Revised_four_parm_input_example.

CLEX

i) Fle Edt Vew Insert Fomat Tools Dsta Window Help Adobe POF -8 X
[ A B 5 D E F G H | =

1 [D BA NT __|SBMEDIAN [SBMEAN _|SBMUPRIME3 [V _XI [IV_LAMBDA[IV_DELTA

2 [ 82112 | 39.398713] 520 29.60| 30.669231] 31115.6217692| 18.56 2574 08

3 [ 52504 | 44.859634] 1200 21.75] 21.255000] 11149.8915500] 10.00 20.00 05

4 | S2804 | 38.357857| 920 22.65| 22.680435|12789.9818913| 3.00 35.00 25

5 | 50406 | 37.391770] 1900 14.90| 15.408421| 4284.6042105] 6.72 2158 1

B v

M« » WNINPUT / |« 3l

Ready

Figure 8—Updated initial values used on S Recovery 4parm program (see text for details).

E7 Microsoft Fxcel - Revised_four_parm_output_example.xls

] Fle Edt View Insert Format Tools Data Window Help Adobe POF o X
A B i D £ ‘ & H] =

1 [LABEL [Xi LAMBDA |GAMMA |DELTA  |LINORM |CONVERGE |RC

2 | S2112 [24.39041] 16.06021| 0.36354] 0.49547| 364E-12] YES 3

3 | S2504 12| 1666871 -0.18498] 053924] 0.028909] VYES 3

4 | S2804 0| 47.33625] 0.24323] 2862539] 0.000732] YES 3

5 | S0406 | 9.66245] 14.40509] 0.40168| 0.71752| 429E-10] YES 3

B v

i« « » »)\ouTPUT/ J 3 >

Ready

Figure 9—Output file created by Sj; Recovery 4parm program for the new run with updated initial values.
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Figure 10—Observed frequencies and S;; simulated distributions using the updated output values of the all-parameter recovery program. All four
graphs (A-D) display good fits to the observed frequencies.
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Figure 11—Observed frequencies and Sj; simulated distribution for
observation “S1104” using the all-parameter recovery program.
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Concluding Remarks

Distinct parameter estimation methods are available for

the SB distribution. Nevertheless, at the state-of-the-art,

few studies have been conducted for its inclusion in stand
models through a moment recovery-based approach. A
major reason is that the S parameter recovery strategies
involve solving complex systems of nonlinear equations. In
this paper we presented methodology that was implemented
in two SAS programs: SB Recovery 3parm and SB Recovery
4parm.

The programs were designed using a robust nonlinear least-
squares minimization technique, the LM algorithm, and
exploitation of the IML capabilities of SAS software. It is
necessary to impose restrictions on the parameters to prevent
projecting the parameters into an unfeasible space and/or

to avoid unreasonable solutions. Restricted estimation

was achieved using the Kuhn-Tucker theorem and the
Lagrange function.

Instructive examples of the S, recovery models were
presented in order to illustrate their use. Users should be
capable of reproducing the example runs and doing new
simulations in an easy manner. SAS programs in text files
are available by request from the authors.
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Appendix A

SAS Source Code for S Recovery 3parm

(Note: Line numbers are for reference and are not part of the program.)



16

OooONOUVIhWNRE

D B R R D B T R R R R

N "
EIE I S

¥ %

3 ID =
* BA = STAND BASAL AREA PER UNIT AREA
* NT = NUMBER
* SBMEDIAN = MEDIAN DIAMETER
*  SBMEAN = AVERAGE DIAMETER
*  DMIN =
* IV_LAMBDA =
* IV_DELTA =
* OUTPUT VARIABLES:
* LABEL =
XI = LOCATION PARAMETER
LAMBDA = RANGE PARAMETER
GAMMA =
DELTA = SHAPE PARAMETER

RC =

b b b

v
7
¥

IDENTIFICATION CHARACTER VARIABLE FOR LABELING PURPOSES

PROGRAM SB RECOVERY 3PARM (SAS version 9.1)

DESIGNED FOR TREE DIAMETER DISTRIBUTIONS, THIS PROGRAM USES A
PERCENTILE-MOMENT METHOD TO RECOVER THE RANGE PARAMETER
(LAMBDA) AND BOTH SHAPE PARAMETERS (GAMMA, DELTA) OF JOHNSON'S *
SB DISTRIBUTION. THE LOCATION PARAMETER (XI) AND INITIAL
VALUES FOR LAMBDA AND DELTA MUST BE SUPPLIED TO START THE
ITERATIVE LEVENBERG-MARQUARDT PROCEDURE.

INPUT VARIABLES:

L1_NORM = VALUE OF L1 NORM OF THE MINIMIZED FUNCTIONS
CONVERGE
SAS

'"YES' OR

OF TREES PER UNIT AREA

MINIMUM DIAMETER, RECODED AS XI IN THE PROGRAM
INITIAL OR STARTING VALUE FOR LAMBDA
INITIAL OR STARTING VALUE FOR DELTA

IDENTIFICATION CHARACTER VARIABLE

SHAPE PARAMETER RELATED TO SKEWNESS

RETURN CODE FROM IML ROUTINE NLPLM INDICATING WHICH

,
-
-
-
-

el

%

o

S

3

%

3

%

b

e
-

=
.
.
.
.

*

%

%

%

B3

b3
.
.

B

EEE

s

5

=

E I

wom % % %

e

*

"NO' CHARACTER VARIABLE FOR CONVERGENCE

sE sk

CONVERGENCE CRITERIA WAS MET OR REASON FOR NONCONVERGENCE *

Programmed by

Reference: Parresol 0 ) 0 )
Johnson's SB distribution. USDA Forest Service
Research Paper SRS-31. 9 p.

B R

OPTIONS NODATE SOURCE;

Bernard R. Parresol

USDA Forest Service
Southern Research Station
200 WT Weaver Boulevard
Asheville, NC 28804 USA

R R o e T kR O R S Ak Sk S

, B.R. 2003. Recovering parameters of

o sk %

E

N OGSO G G R G G R G N N G T R O R O T O OGN

READ DATA FROM AN EXCEL FILE;
USER SUPPLIED DATAFILE IN PROC IMPORT;

PROC IMPORT OUT= WORK.ONE

DATAFILE= "f1ilename"
DBMS=EXCEL REPLACE;
GETNAMES=YES;

RUN;

TITLE '3 PARAMETER RECOVERY SYSTEM FOR SB DISTRIBUTION';

* TITLE2

“XXXXXXXXXX-" 3

/¥ <== USER CAN ADD DESCRIPTIVE PROJECT TITLE */



61
62
63

PROC IML; /* START MATRIX LANGUAGE

START FCN(X)

*/

64 GLOBAL(K,C,3,BA,NT,SBMEDIAN,SBMEAN, XI,LAMBDA,DELTA,GAMMA,R,DM1,DM2,F);
6

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

-"-'::":-.'::":-.'::':-.“::':-.“::':-.“:-.“::':-.‘:z'::':-.“::'c-.“::'c-.“::’:7':-.“:7':-.“:7':/

=

SO

:':/
n/
*/
*/
*/
v
*/

/*  MODULE FCN IS CALLED BY PROCEDURE NLPLM TO
/*  EVALUATE THE LEFT-HAND SIDE OF EQUATIONS:
/* FCN(LAMBDA,DELTA) - SBMEAN = 0
/% FCNC(LAMBDA,DELTA) - BA =0
/'4» R e e e A ATt T i b e e A T Lo e o e A R A A e e A e A 1o e A o o A e T A o o A o A T
EREEE SOLVE FOR GAMMA GIVEN ESTIMATES OF XI,
LAMBDA = X[1];
DELTA = X[2]; _
GAMMA = DELTA*LOG(LAMBDA/(SBMEDIAN[i]-XI)-1);
——————— OBTAIN MOMENTS OF SB DISTRIBUTION;
A= {.M .P}; /* LIMITS OF INTEGRATION
R = 1; /* EXPONENT FOR 1ST MOMENT *
CALL QUAD(DM, "MOMENT",A)  /* NUMERICAL INTEGRATION
EPS=1E-10;
DML = C*DM; /* VALUE OF FIRST MOMENT
R = 2; /* EXPONENT FOR 2ND MOMENT
CALL QUAD(DM, "MOMENT",A)  /* NUMERICAL INTEGRATION
EPS=1E-10;
DM2 = C*DM; /* VALUE OF SECOND MOMENT
——————— COMPUTE VALUES OF FCN;
F= {0 0}; _
F[1] = XI + LAMBDA*DM1 - SBMEAN[i]; _
F[2] = (XI**2 + 2*XI*LAMBDA*DML + LAMBDA**2%DM2)*K*NT[i]
RETURN(F) ;
FINISH FCN;
START MOMENT(Z) GLOBAL(DELTA,GAMMA,R);

Fedehhdeh D Rnh RN hfdfdddddidd

/
/
/ MODULE MOMENT IS FOR EVALUATING THE
/* MOMENTS OF THE SB DISTRIBUTION.
/*
/

V = EXP(-.5%Z%*%2) /(1 + EXP((GAMMA-Z)/DELTA))**R;

RETURN(V) ;
FINISH MOMENT;

*

Jele e

Tkl fhdhdhdehdeh R hn

BRI

ER

® %

NSNS

LAMBDA, AND DELTA;

- BA[1];
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117 START PSEUDO(Z) GLOBAL(DELTA,GAMMA,R) ;

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142 *

143
144
145
146
147
148
149

150 *

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

175 *

176

/*****%** dedededededeede

* MODULE PSEUDO IS FOR EVALUATING THE

X

T e

SEEEY

e

E R R AR R R R R S e R R S R SR S R

ek deddekdede

PSEUDO-MOMENTS OF THE SB DISTRIBUTION. ¥

e

o

o

e

/
/
/
/
/
/
)

V = Z*EXP(-.5%Z*%*2) /(1 + EXP((GAMMA-Z)/DELTA))**R;
RETURN(V) ;
FINISH PSEUDO;

START DERIV(X) GLOBAL(K,C,i,XI,LAMBDA,GAMMA,DELTA,R,DM1,DM2,SBMEDIAN,NT);

A
R
CA

DM

R
CA

PM

R
CA

PM

R
CA

PM

DM
DM
PM
PM
DN

MODULE DERIV IS CALLED BY NLPLM

TO EVALUATE THE PARTIAL DERIVATIVES OF
FCN(LAMBDA,DELTA) = SBMEAN

FCN(LAMBDA,DELTA) =

BA

OBTAIN THIRD MOMENT;

{.M .P};

= 3;

LL QUAD(DM, "MOMENT",A)
EPS=1E-10 PEAK=1 SCALE=0.1;
3 = C*DM;

OBTAIN PSEUDO-MOMENTS;

LL QUAD(PM, "PSEUDO",A)
EPS=1E-10 PEAK=1 SCALE=0.1;
1 = C*Pm;

LL QUAD(PM, "PSEUDO",A)
EPS=1E-10 PEAK=1 SCALE=0.1;
2 = C*PM;

LL QUAD(PM, "PSEUDO",A)
EPS=1E-10 PEAK=1 SCALE=0.1;
3 = C*PM;

>

N N S NN

%

R

kal s sk

%

ﬁ**************************************/

SN

LIMITS OF INTEGRATION =/
EXPONENT FOR 3RD MOMENT */
NUMERICAL INTEGRATION */

VALUE OF THIRD MOMENT */

EXPONENT FOR 1ST PSEUDO-MOMENT
NUMERICAL INTEGRATION §

* VALUE OF FIRST PSEUDO-MOMENT

2/
.:/
'.‘:/
EXPONENT FOR 2ND PSEUDO-MOMENT */
NUMERICAL INTEGRATION */
VALUE OF SECOND PSEUDO-MOMENT */
:':f/
.:/
x/

EXPONENT FOR 3RD PSEUDO-MOMENT

* NUMERICAL INTEGRATION

* VALUE OF THIRD PSEUDO-MOMENT *

DEFINE COMMON ELEMENTS OF DERIVATIVES;

2.1 = DM2 - DM1;
3_2 = DM3 - DM2;
2.1 = PM2 - PM1;
3_2 = PM3 - PM2;
= LAMBDA - SBMEDIAN[i] + XI;

COMPUTE JACOBIAN MATRIX;



177
178
179
180
181
182
183
184
185
186
187

188 AR R

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

206 *

207
208
209
210
211
212
213
214
215
216
217
218
219
220

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

N
N
-

3(2,2,0);

J
J[1,1] DM1 + LAMBDA * DM2_1 / DN;
J[1,2]

LAMBDA*PM2_1 / (DELTA®DELTA); /* f1/DELTA
J[2,1] (XI*DM1 + LAMBDA*DM2 + (XI*LAMBDA .
*DM2_1 + LAMBDA**2%DM3_2) / DN)*2*K*NT[i]; /* f2/LAMBDA
3[2,2] = LAMBDA/DELTA**2%*(XI*PM2_1 + LAMBDA*PM3_2)
#2%KENT[1]; /* f2/DELTA
RETURN (3);
FINISH DERIV;
WSk ______ > EXECUTE PROGRAM Cm———— ***************;
LABEL = '12345'; /* TO LABEL OUTPUT, LENGTH CAN BE SET BY USER */
CONVERGE = '123'; /* INITIALIZE CHARACTER VARIABLE OF LENGTH 3 */
Fomm o SET UP OUTPUT DATASET TO HOLD PARAMETER ESTIMATES AND RESULTS;

CREATE RESULTS VAR {LABEL XI LAMBDA GAMMA DELTA L1_NORM CONVERGE

USE ONE; /* INPUT DATASET USED BY PROC IML */
READ ALL VAR{ID BA NT SBMEDIAN SBMEAN DMIN IV_LAMBDA IV_DELTA};

NOBS = NROW(BA) ;
IV = IV_LAMBDA| |IV_DELTA;

/* NUMBER OF OBSERVATIONS */

Hem oo INITIALIZATION;

4*ATAN(L) ;
PI/576;
PI/40000;
1/SQRT(2*PI);

= {2 1};

* CONVERSION TO ft2 - USE FOR ENGLISH
* CONVERSION TO m? -~ USE FOR METRIC
* CONSTANT FOR MOMENTS

o
T
—
z

* OPTIONS VECTOR
* 1ST VALUE IS NUMBER OF EQUATIONS IN

33T O3E:

a

MATRIX. CONSTRAINTS MUST USE >= AND <= INEQUALITIES, NOT

3 % 3%
[ |
[
[ |

ok

MEDIAN DIAMETER (SBMEDIAN), i.e. G = DXLN(L/(SBMEDIAN-XI)
THE EQUATION REVEALS THAT L/(SBMEDIAN-XI) > 1 TO AVOID AN

tl
11
[
I

ok

MATTER THE RANGE SHOULD BE RESTRICTED. A REASONABLE UPPER
“~——~ IS 2XINITIAL GUESS FOR L. BY DEFINITION OF THE SB DISTRIB
*--— D > 0. GATHERING ALL THIS TOGETHER, WE HAVE:

e SBMEDIAN-XI < L <= 2 X IV_L (Iv IS INITIAL VALUE)
e m 0<D

*~——~ BECAUSE CONSTRAINTS MUST BE EXPRESSED AS <= OR >=, WE NEE
*~-- MAKE SMALL ADJUSTMENTS. OUR FINAL CONSTRAINTS ARE:

Fee e SBMEDIAN-XI+0.01 <= L <= 2 x IV_L
Fmm 0.01 <= D

IR R R IR IR IR RIS YIS,

RC};

/* MATRIX CONTAINING INITAL VALUES */

SYSTEM
SYSTEM

SYSTEM

*---  BOUNDARY CONDITIONS ARE IMPOSED WITH THE CON OR CONSTRAINTS

> OR <

INEQUALITIES. WITH THIS IN MIND, WE USE THE FOLLOWING FACTS TO
CONSTRUCT THE NECESSARY CON MATRIX. GAMMA (G) IS A FUNCTION OF
THE OTHER 3 PARAMETERS XI, LAMBDA(L) AND DELTA (D) PLUS THE

-1).

ILLEGAL LOG ARGUMENT, THUS SBMEDIAN-XI < L. AS A PRACTICAL

BOUND
UTION,

D TO

/* f1/LAMBDA

3 3k

SN

*/
7:/
7':/
7':/

* 2ND VALUE DETERMINES AMOUNT OF PRINTED OUTPUT *
* 0=NO OUTPUT, 1=SUMMARIES & ITERATION HISTORY

5

e

OO

*

*®

I T R I

EE
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237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

CON = {0 1E-2, 100 .}; /* INITIALIZE PARAMETER CONSTRAINTS MATRIX */
/* ELEMENTS OF ROW 1 ARE LOWER BOUNDS FOR /
/% LAMBDA & DELTA. ELEMENTS OF ROW 2 ARE */
?* UPPER BOUNDS FOR LAMBDA & DELTA. A '.' *?

* OR MISSING VALUE MEANS NO BOUNDARY. *

L PROCESS OBSERVATIONS;

DO i = 1 TO NOBS; /% LOOP THROUGH OBSERVATIONS */
LABEL = ID[i];
XI=DMIN[];
X=IV[i,1; /% INITAL VALUES VECTOR FOR PARAMETERS */

Femm CHECK VALIDITY OF INITIAL VALUES;

IF X[1] < SBMEDIAN[i]-XI+0.01 | X[2] < 0.01 THEN DO;
LAMBDA = X[1];
DELTA = X[2];
PRINT "ERROR - INITIAL VALUES ARE INVALID:" LABEL XI LAMBDA DELTA;
GOTO CONTINUE;
END;

LB=SBMEDIAN[1]-XI+0.01; /* LOWER BOUNDARY CONSTRAINT FOR LAMBDA */

UPPER BOUNDARY CONSTRAINT FOR LAMBDA */
* SET AT 2 X INITIAL GUESS FOR LAMBDA */
/

UB=2*1Vv[i,1]; /*
/4:
/* USER CAN SET A DIFFERENT UPPER BOUND *
¥
/.‘

CON[1,1] = LB; RESET VALUE IN CONSTRAINTS MATRIX */
CON[2,1] = UB; RESET VALUE IN CONSTRAINTS MATRIX */
CALL NLPLM(RC,XR,"FCN",X,0PTN,CON, , ,, "DERIV"); /* LEVENBERG-MARQUARDT */
L1_NORM = SUM(ABS(F)); /* L1 NORM */

IF RC>0 THEN CONVERGE='YES'; ELSE CONVERGE='NO'; /* RC IS RETURN CODE */
/% FROM NLPLM */

PRINT LABEL XI LAMBDA GAMMA DELTA L1_NORM;

APPEND; /* ADD OBSERVATIONS TO OUTPUT DATASET */

CONTINUE: * GO TO NEXT OBSERVATION */

m
=
o
S ::

* END OF DO LOOP PROCESSING */

* EXIT IML */

[
c
—
=
~

Hem oo PRINT RESULTS;

PROC PRINT DATA=RESULTS;
RUN;

REEEEE SAVE RESULTS TO AN EXCEL FILE;
e USER SUPPLIED OUTFILE IN PROC EXPORT;

PROC EXPORT DATA= WORK.RESULTS
OUTFILE= "filename"
DBMS=EXCEL REPLACE;
RUN;



Appendix B

SAS Source Code for S Recovery 4parm

(Note: Line numbers are for reference and are not part of the program.)
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PROGRAM SB RECOVERY 4PARM (SAS version 9.1)

DESIGNED FOR TREE DIAMETER DISTRIBUTIONS, THIS PROGRAM USES A
PERCENTILE-MOMENT METHOD TO RECOVER ALL FOUR PARAMETERS OF
JOHNSON'S SB DISTRIBUTION: LOCATION PARAMETER (XI), RANGE
PARAMETER (LAMBDA) AND BOTH SHAPE PARAMETERS (GAMMA, DELTA).
INITIAL VALUES FOR XI, LAMBDA, AND DELTA MUST BE SUPPLIED TO
START THE ITERATIVE LEVENBERG-MARQUARDT PROCEDURE.

INPUT VARIABLES:

ID = IDENTIFICATION CHARACTER VARIABLE FOR LABELING PURPOSES
BA = STAND BASAL AREA PER UNIT AREA

NT = NUMBER OF TREES PER UNIT AREA

SBMEDIAN = MEDIAN DIAMETER

SBMEAN = AVERAGE DIAMETER

SBMUPRIME3 = THIRD NONCENTRAL MOMENT

IV_XI = INITIAL OR STARTING VALUE FOR XI

IV_LAMBDA = INITIAL OR STARTING VALUE FOR LAMBDA

IV_DELTA = INITIAL OR STARTING VALUE FOR DELTA

OUTPUT VARIABLES:

LABEL = IDENTIFICATION CHARACTER VARIABLE
XI = LOCATION PARAMETER

LAMBDA = RANGE PARAMETER

GAMMA = SHAPE PARAMETER RELATED TO SKEWNESS
DELTA = SHAPE PARAMETER

L1 _NORM = VALUE OF L1 NORM OF THE MINIMIZED FUNCTIONS

CONVERGE = 'YES' OR 'NO' CHARACTER VARIABLE FOR CONVERGENCE

RC = SAS RETURN CODE FROM IML ROUTINE NLPLM INDICATING WHICH
CONVERGENCE CRITERIA WAS MET OR REASON FOR NONCONVERGENCE

Reference: Fonseca, T.F., Marques, C.P., and Parresol, B.R.
2009. Describing maritime pine diameter
distributions with Johnson's SB distribution
using a new all-parameter recovery approach.
Forest Science. 55(4): 367-373.

Programmed by Bernard R. Parresol
USDA Forest Service
Southern Research Station
200 WT Weaver Boulevard
Asheville, NC 28804 USA

AND

Teresa Fidalgo Fonseca
Departamento de Ciéncias Florestais
e Arquitectura Paisagista
Universidade de Tras-os-Montes e Alto Douro
Apartado 1013, 5001-801 vila Real, Portugal

R RO O R

OPTIONS NODATE SOURCE;

filintaintaie READ DATA FROM AN EXCEL FILE;

Fom USER SUPPLIED DATAFILE IN PROC IMPORT;
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103
104
105
106
107
108
109
110
111
112

113 =*

114
115
116
117
118
119
120
121

PROC IMPORT OUT= WORK.ONE

DATAFILE= "filename"
DBMS=EXCEL REPLACE;
GETNAMES=YES;
RUN;
TITLE 'ALL PARAMETER RECOVERY SYSTEM FOR SB DISTRIBUTION';

* TITLEZ2 ' —-XXXXXXXXXX-': /*
PROC IML; /* START MATRIX LANGUAGE */
START FCN(X)

GLOBAL (K,C,i,BA,NT,SBMEDIAN, SBMEAN , SBMUPRIME3,

<== USER CAN ADD DESCRIPTIVE PROJECT TITLE */

XI,LAMBDA,DELTA,GAMMA,R,DM1,DM2,DM3, F) ;
/ dededdedefededefehdedod Nl dedehdede e dededefeohdeod e ek dedede okl dedede ok 7:.: /
/ </
/ MODULE FCN IS CALLED BY PROCEDURE NLPLM TO */
/ EVALUATE THE LEFT-HAND SIDE OF EQUATIONS: =/
/¥ FCN(XI,LAMBDA,DELTA) - SBMEAN = 0 */
/* FCN(XI,LAMBDA,DELTA) - BA =0 */
/ FCN(XI,LAMBDA,DELTA) - SBSIZE = 0 */
/'4»'» L e e o e R R e e i e e o L e o L R A A Lo e o T A o L o o LI o At o Ao b A e e L n'n‘n'n/
Fommmm SOLVE FOR GAMMA GIVEN ESTIMATES OF XI, LAMBDA, AND DELTA;
XI = X[1];
LAMBDA = X[2];
DELTA = X[3]; )
GAMMA = DELTA*LOG(LAMBDA/(SBMEDIAN[i]-XI)-1);
—————— OBTAIN MOMENTS OF SB DISTRIBUTION;
A= {.M .P}; /% LIMITS OF INTEGRATION */
R =1; /* EXPONENT FOR 1ST MOMENT */
CALL QUAD(DM, "MOMENT",A) /* NUMERICAL INTEGRATION */
EPS=1E-10;
DM1 = C*DM; /* VALUE OF FIRST MOMENT /
R = 2; /* EXPONENT FOR 2ND MOMENT */
CALL QUAD(DM, "MOMENT",A) /* NUMERICAL INTEGRATION */
EPS=1E-10;
DM2 = C*DM; /* VALUE OF SECOND MOMENT /
R = 3; /* EXPONENT FOR 3RD MOMENT */
CALL QUAD(DM, "MOMENT",A) /* NUMERICAL INTEGRATION =/
EPS=1E-10 PEAK=1 SCALE=0.1;
DM3 = C*DM; /* VALUE OF THIRD MOMENT */
—————— COMPUTE VALUES OF FCN;
F=1{00 0}; _
F[1] = XI + LAMBDA*DM1 - SBMEAN[i]; ] ]
F[2] = (XI**2 + 2*XI*LAMBDA*DM1 + LAMBDA “KANT[i] - BA[i];
F[3] = XI%*3 + 3*XT**2*LAMBDA*DM1 + 3*XI*LAMBDA**2*DMZ2 + LAMBDA**3*DM3
- SBMUPRIME3[i];
RETURN(F);
FINISH FCN;

23



122
123
%%4 START MOMENT(Z) GLOBAL(DELTA,GAMMA,R);

5
126 /" dedededek ,.:':7':7':7':7':7'\-7':7'\-7':7':7':7':7':7':7':7':7':7':7':7':7'::’:-.'::’:-.'::’:-.'::‘:7’::‘::’::‘::‘::‘::‘::‘::‘:/
127 /* */
128 /= MODULE MOMENT IS FOR EVALUATING THE ®/
129 /* MOMENTS OF THE SB DISTRIBUTION. */
130 /’ ¥/
131 /#+ /
132
133 V = EXP(-.5%Z**2) /(1 + EXP((GAMMA-Z)/DELTA))**R;
134 RETURN(V) ;
135 FINISH MOMENT;
136
137
%gg START PSEUDO(Z) GLOBAL(DELTA,GAMMA,R);
140 /********************************************n
141
142
143
144
145
146
147 V = Z¥EXP(-.5%Z2**2) /(1 + EXP((GAMMA-Z)/DELTA
148 RETURN(V),
149 FINISH PSEUDO;
150
151
152 START DERIV(X) GLOBAL(K,C,i,XI,LAMBDA,GAMMA,DELTA,R,DM1,DM2,DM3,SBMEDIAN,NT);
153
154
155
156
157

B R R R R R S A S R T S T S S R R

2

ARG OCGOOGN

MODULE PSEUDO IS FOR EVALUATING THE
PSEUDO-MOMENTS OF THE SB DISTRIBUTION.

R i R R TR R T R S S T S S SR S T S SRR SO o SR A S SR R T

STEEEY

IFFR;

Fededh TS NnTehNdhdde Tl NhToh Tl hTede SN hde il hde el

L
-

P

OO

MODULE DERIV IS CALLED BY NLPLM
TO EVALUATE THE PARTIAL DERIVATIVES OF

3

158 FCN(XI,LAMBDA,DELTA) = SBMEAN
159 FCN(XI,LAMBDA,DELTA) = BA
160 FCN(XI,LAMBDA,DELTA) = SBSIZE

161
162
163
164 *----- OBTAIN FOURTH MOMENT,

* LIMITS OF INTEGRATION

165
166 A { M .P}; / */

/* EXPONENT FOR 4TH MOMENT */
168 CALL QUAD(DM "MOMENT" ,A) /% NUMERICAL INTEGRATION */
/

IR

[ S A S S M UL DU MR VIR D A FC YT FUE 0 DUC S A0 DU A I S S P XU TR X DR D A
R R R L R o o Rk S R o S SR o

e

167 R

169 EPS=1E-10 PEAK=1 SCALE=0.1;
170 DM4 = C*DM;

171

172 *-—--- OBTAIN PSEUDO-MOMENTS;

173

174 R = 1; /* EXPONENT FOR 1ST PSEUDO-MOMENT */
175 CALL QUAD(PM, "PSEUDO",A) /* NUMERICAL INTEGRATION */
176 EPS=1E-10 PEAK=1 SCALE=0.1;

177 PM1 = C*PM; /* VALUE OF FIRST PSEUDO-MOMENT  */
178

* VALUE OF FOURTH MOMENT */



179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

194 *

195
196
197
198
199
200
201

202 *

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232 *

233
234
235
236
237
238

R = 2;

PM2 =

R = 3;

PM3 =

R = 4;

/*

CALL QUAD(PM, "PSEUDO",A) /%
EPS=1E-10 PEAK=1 SCALE=0.1;

PM; /¥

/*

CALL QUAD(PM, "PSEUDO",A) /*
EPS=1E-10 PEAK=1 SCALE=0.1;

PM; /*

/*

CALL QUAD(PM, "PSEUDO",A) /%

EPS=1E-10 PEAK=1 SCALE=0.1; y

PM;

PM4 =

W —

C *

C*

C *

EXPONENT FOR 2ND PSEUDO-MOMENT *
NUMERICAL INTEGRATION *

VALUE OF SECOND PSEUDO-MOMENT

/
/
/
* EXPONENT FOR 3RD PSEUDO-MOMENT */
NUMERICAL INTEGRATION */
/
/
/
/

VALUE OF THIRD PSEUDO-MOMENT *

EXPONENT FOR 4TH PSEUDO-MOMENT *
* NUMERICAL INTEGRATION *

* VALUE OF FOURTH PSEUDO-MOMENT

DEFINE COMMON ELEMENTS OF DERIVATIVES;

o

LA
SB

DM2 - DM1;
DM3 - DM2;
DM4 - DM3;

MBDA - SBMEDIAN[i] + XI;
MEDIAN[i] - XI;

COMPUTE JACOBIAN MATRIX;

/
/
/
/
/
/

*/

7':/

J =13@3,3,0);
J[1,1] = 1 + LAMBDA*¥*2 * DM2_1 / (DN1 * DN2); /% f1/X1
J[1,2] = pDM1 + LAMBDA * DM2_1 / DN1; /* f1/LAMBDA *
J[1,3] = LAMBDA/DELTA**2%*(PM2 - PM1); /* f1/DELTA *
J[2,1] = (XI+LAMBDA*DM1+(XI*LAMBDA**2%*DM2_1+LAMBDA**3
*DM3_2) / (DN1 * DN2))*2*K*NT[1i]; /% f2/X1 *
J3[2,2] = (XI*DM1+LAMBDA*DM2+(XI*LAMBDA*DM2_1+LAMBDA**2
*DM3_2) / DN1)*2*K*NT[i]; /% f2/LAMBDA *
3[2,3] = LAMBDA/DELTA**2%*(XI*(PM2 - PM1) + LAMBDA
*(PM3 - PM2))*2*K*NT[i]; /% f2/DELTA
J[3,1] = 3*(XIT**2+2*XI*LAMBDA*DM1+LAMBDA**2*DM2+{(XI**2
*LAMBDA®*2*DM2_1+2*XI* LAMBDA**3*DM3_2
+LAMBDA**4*DM4_3) / (DN1 * DN2)); /* f3/XI
J[3,2] = 3*(XT** M1+2*XI*LAMBDA*DM2+LAMBDA**2*DM3
+(XI‘"2‘ LAMBDA*DM2_1+2*XI*LAMBDA**2%*DM3_2
+LAMBDA** 3% DM4 3) / DNl), /* f3/LAMBDA */
3[3,3] = 3*LAMBDA/DELTA**2%*(XI**2%*(PM2 - PM1)
+2*XI*LAMBDA* (PM3 - PM2)
+LAMBDA**2% (PM4 - PM3)); /% f3/DELTA
RETURN(I);
FINISH DERIV;
FededefededefefeNNd > EXECUTE PROGRAM <——— —*************;
LABEL = '12345"; /* TO LABEL OUTPUT, LENGTH CAN BE SET BY USER */
CONVERGE = '123'; /% INITIALIZE CHARACTER VARIABLE OF LENGTH 3 */

SET UP OUTPUT DATASET TO HOLD PARAMETER ESTIMATES AND RESULTS;

CREATE RESULTS VAR {LABEL XI LAMBDA GAMMA DELTA L1_NORM CONVERGE RC};

USE ONE;

/% INPUT DATASET USED BY PROC IML */
READ ALL VAR{ID BA NT SBMEDIAN SBMEAN SBMUPRIME3 IV_XI IV_LAMBDA IV_DELTA};

25



26

239 NOBS = NROW(BA);

240 1V =

241

242 *

243
244

245 *

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

L R

ok

Sho3k sh 3 sh sk ok S

o 3

e 3k

ok 3k

I I I I I IR IS

e

PI/576;

o
U
=
z

INITIALIZATION;
4%ATAN(L) ;

PI/40000;
1/SQRT(2*P1);

= {3 1};

TC = {400 1000};

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

BLC = {0
1 1

1E-2

BOUNDARY CONDITIONS AND LINEAR RESTRICTIONS ARE IMPOSED WITH
THE BLC MATRIX OR BOUNDARY & LINEAR CONSTRAINTS MATRIX.
CONSTRAINTS MUST USE >= AND <= INEQUALITIES, NOT > OR <
INEQUALITIES. WITH THIS IN MIND, WE USE THE FOLLOWING FACTS TO
CONSTRUCT THE NECESSARY BLC MATRIX. GAMMA (G) IS A FUNCTION OF
THE OTHER 3 PARAMETERS XI, LAMBDA(L) AND DELTA (D) PLUS THE
MEDIAN DIAMETER (SBMEDIAN), i.e. G = DXLN(L/(SBMEDIAN-XI)-1).
DIAMETER CAN NOT BE LESS THAN ZERO. FROM THE EQUATION IT IS
OBVIOUS THAT XI MUST BE LESS THAN SBMEDIAN TO AVOID AN ILLEGAL
LOG ARGUMENT, HENCE 0<=XI<SBMEDIAN. ALTERNATIVELY, ONE CAN USE
OBSERVED MINIMUM DIAMETER AS AN UPPER BOUND CONSTRAINT FOR XI.
THE EQUATION ALSO REVEALS THAT L/(SBMEDIAN-XI) > 1 TO AVOID AN
ILLEGAL LOG ARGUMENT, THUS SBMEDIAN-XI < L. BECAUSE XI AND L
ARE SIMULTANEOUSLY ESTIMATED, THIS GIVES THE LINEAR RESTRICTION
XI + L > SBMEDIAN. AS A PRACTICAL MATTER THE RANGE SHOULD BE
RESTRICTED. A REASONABLE UPPER BOUND IS 2XINITIAL GUESS FOR L.
BY DEFINITION, D > 0. GATHERING ALL THIS TOGETHER, WE HAVE:

0 <= XI < SBMEDIAN

L
D

XI + L

BECAUSE CONSTRAINTS MUST BE EXPRESSED AS <= OR >=, WE NEED TO
MAKE SMALL ADJUSTMENTS. OUR FINAL CONSTRAINTS ARE:

XI <= SBMEDIAN - 0.01

L
D

XI + L

1

E

b

o

DD

I

/* NUMBER OF OBSERVATIONS */

IV_XI||IV_LAMBDA||IV_DELTA; /* MATRIX CONTAINING INITIAL VALUES */

CONVERSION TO ft2? - USE FOR ENGLISH SYSTEM =/
CONVERSION TO m? - USE FOR METRIC SYSTEM */
CONSTANT FOR MOMENTS */
* OPTIONS VECTOR */
1ST VALUE IS NUMBER OF EQUATIONS IN SYSTEM */
2ND VALUE DETERMINES AMOUNT OF PRINTED OUTPUT */
0=NO OUTPUT, 1=SUMMARIES & ITERATION HISTORY */
TERMINATION CRITERIA VECTOR =/
1ST VALUE IS MAX ITERATIONS */

2ND VALUE IS MAX FUNCTION CALLS */

B

| T N S N S N

| N e N e e

| I A R S N HS N U e A M e A A N A |
P A I R R R R R R 2

<=2 X IV_L (IvV IS INITIAL VALUE)

Sesh S SR Sh 3 e e

> SBMEDIAN

| T I I |

LIS I I I |

L N N B |
s 3 s

P

<= 2 X IV_L

O R R T O O SR R SR SIS O ORI OB OIS S
B N N

PO

>= SBMEDIAN + 0.01

* BLC MATRIX, ELEMENTS OF ROW 1 ARE LOWER */
* BOUNDS FOR XI, LAMBDA & DELTA. ELEMENTS */
* OF ROW 2 ARE UPPER BOUNDS FOR XI, */
* LAMBDA, DELTA. ELEMENTS OF ROW 3 ARE *;
,’:/
%

* USED FOR THE LINEAR RESTRICTION. A '.' *

* OR MISSING VALUE MEANS NO BOUNDARY OR i
* IS A PLACE HOLDER. ®

SN
sosE sb s 3R s



298

299 *——o—- PROCESS OBSERVATIONS;

300

301 DO i = 1 TO NOBS; /% LOOP THROUGH OBSERVATIONS */

302

303 LABEL = ID[1i];

284 X=Iv[i,]; /* INITAL VALUES VECTOR FOR PARAMETERS */
5

386 Li—— CHECK VALIDITY OF INITIAL VALUES;
7

308 IF X[1] < O | X[1] > SBMEDIAN[i]-0.01 | X[2] < SBMEDIAN[i]-X[1]+0.01

309 | X[3] < 0.01 THEN DO;

310 XI = X[1];

311 LAMBDA = X[2]:

312 DELTA = X[3];

313 PRINT "ERROR - INITIAL VALUES ARE INVALID:" LABEL XI LAMBDA DELTA;

314 GOTO CONTINUE;

315 END;

316

317 UB_XI = SBMEDIAN[i]-0.01; /* UPPER BOUNDARY CONSTRAINT FQOR XI */
318

319  UB_LAMBDA = 2*IV[i,2]; /* UPPER BOUNDARY CONSTRAINT FOR LAMBDA */
320 /* SET AT 2 x INITIAL GUESS FOR LAMBDA */
321 /* USER CAN SET A DIFFERENT UPPER BOUND */
322

323 LR = SBMEDTAN[i]+0.01; /* LINEAR RESTRICTION */

324

325  BLC[2,1] = UB_XI; /* RESET VALUE IN CONSTRAINTS MATRIX */
326  BLC[2,2] = UB_LAMBDA; /* RESET VALUE IN CONSTRAINTS MATRIX */
327  BLC[3,5] = LR; /* RESET VALUE IN CONSTRAINTS MATRIX */

328

329 CALL NLPLM(RC,XR,"FCN",X,0PTN,BLC,TC,,,"DERIV"); /* LEVENBERG-MARQUARDT */
330

331  IF XI < 1E-7 THEN XI=0;  /* ROUND SMALL VALUES OF XI TO ZERO */

332 L1_NORM = SUM(ABS(F)); /* L1 NORM */

333 IF RC>0 THEN CONVERGE='YES'; ELSE CONVERGE='NO'; /* RC IS RETURN CODE */
334 /* FROM NLPLM %
335 PRINT LABEL XI LAMBDA GAMMA DELTA L1_NORM;

336  APPEND; /* ADD OBSERVATIONS TO OUTPUT DATASET */

ggg CONTINUE: /* GO TO NEXT OBSERVATION */

328 END; /* END OF DO LOOP PROCESSING */

341 QUIT; /* EXIT IML */

342

343 *——--- PRINT RESULTS;

344

345 PROC PRINT DATA=RESULTS;

346 RUN;

347

348 ¥——--- SAVE RESULTS TO AN EXCEL FILE;

ggg Femmom USER SUPPLIED OUTFILE IN PROC EXPORT;

351 PROC EXPORT DATA= WORK.RESULTS

352 OUTFILE= "f1ilename"

353 DBMS=EXCEL REPLACE;

354 RUN;






Parresol, Bernard R.; Fonseca, Teresa Fidalgo; Marques, Carlos Pacheco. 2010.
Numerical details and SAS programs for parameter recovery of the Sy distribution.
Gen. Tech. Rep. SRS—122. Asheville, NC: U.S. Department of Agriculture Forest
Service, Southern Research Station. 27 p.

The four-parameter Sy, distribution has seen widespread use in growth-and-yield modeling because
it covers a broad spectrum of shapes, fitting both positively and negatively skewed data and bimodal
configurations. Two recent parameter recovery schemes, an approach whereby characteristics of a
statistical distribution are equated with attributes of a stand in order to solve for the parameters of
the distribution, are described for the Sy;. The first scheme permits recovery of the range and both
shape parameters, but the location parameter must be a priori specified. The second scheme is an
all-parameter recovery model. The details of the parameter recovery models, that is the system of
equations with their concomitant constraints, are laid out. A solution technique for the constrained
parameter recovery models that uses the Kuhn-Tucker conditions, the Lagrange function, and the
Levenberg-Marquardt algorithm is briefly reviewed. Two Statistical Analysis System programs that
implement the parameter recovery models, Sg Recovery 3parm and Sg Recovery 4parm, are listed
and demonstrated with instructive examples.

Keywords: Basal area-size distribution, constraint functions, diameter distributions, moments,
nonlinear programming problem, restricted estimation.
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