CARBON DIOXIDE FLUXES IN A CENTRAL HARDWOODS OAK-HICKORY FOREST ECOSYSTEM

Stephen G. Pallardy, Lianhong Gu, Paul J. Hanson, Tilden P. Myers, Stan D. Wullschleger, Bai Yang, Jeffery S. Riggs, Kevin P. Hosman, and Mark Heuer1

Abstract—A long-term experiment to measure carbon and water fluxes was initiated in 2004 as part of the Ameriflux network in a second-growth oak-hickory forest in central Missouri. Ecosystem-scale (~ 1 km²) canopy gas exchange (measured by eddy-covariance methods), vertical CO₂ profile sampling and soil respiration along with meteorological parameters were monitored continuously. Early results from this forest located on the western margin of the Eastern Deciduous Forest indicated high peak rates of canopy CO₂ uptake (35-40 μmol/m²/second) during the growing season in the relatively wet year of 2004. Late growing-season CO₂ uptake rates declined despite the absence of drought, suggesting declining leaf photosynthetic capacity that preceded leaf fall or removal of leaf area by herbivory. Canopy CO₂ profile measurements in summer indicated substantial accumulation of CO₂ (~ 500 ppm) near the surface in still air at night, venting of this buildup in the morning hours under radiation-induced turbulent air flow, and small vertical gradients of CO₂ during most of the subsequent light period with minimum CO₂ concentrations in the canopy. Flux of CO₂ from the soil ranged from 2 to 8 μmol/m²/second during the growing season and increased with temperature. Flux of forest floor CO₂ fell below 1 μmol/m²/second during mid-winter periods. Data from this site and others in the network will also allow characterization of regional spatial variation in carbon fluxes as well as inter-annual differences attributable to climatic events such as droughts.

INTRODUCTION

Traditionally, foresters have assessed the economic value of forests based on quantity and quality of stem wood production. While this assessment remains an important perspective on resource use, there are other approaches that have both economic and ecological utility. The eddy-covariance (EC) technique to monitor exchanges of CO₂, water vapor, and heat at the interface between vegetation and the atmosphere allows a more complete accounting of carbon balance in forest ecosystems (Baldocchi and others 1988, Baldocchi 2003). As carbon uptake or loss is the primary determinant of productivity of forest ecosystems, EC measurements can provide a valuable tool for foresters, forest ecologists and those interested in assessing the capacity of forests to sequester carbon. The latter may be of increasing economic importance as greenhouse gas emissions force climate change.

In the Central Hardwoods Region there are now at least three EC sites operating in forest ecosystems (Walker Branch, TN; Morgan Monroe State Forest, IN; Missouri Ozarks, MO). The Missouri site is the most recent addition and a primary objective of the project is long-term quantification of carbon fluxes of a Central Hardwoods forest in this forest-prairie transition region expected to be limited by water availability. The site has been operating since June of 2004 and data are now available to illustrate the potential value of such research to the forestry community.

1 Stephen G. Pallardy, Professor, University of Missouri-Columbia, Department of Forestry, Columbia, MO 65211; Lianhong Gu, Research and Development Associate, and Paul J. Hanson, Senior Research and Development Scientist, Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN 37831; Tilden P. Myers, Atmospheric Scientist, National Oceanic and Atmospheric Administration, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN 37831; Stan D. Wullschleger, Senior Research Scientist, Bai Yang, Postdoctoral Research Associate, and Jeffery S. Riggs, Electronics Specialist, Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN 37831; Kevin P. Hosman, Research Specialist, University of Missouri-Columbia, Department of Forestry, Columbia, MO 65211; and Mark Heuer Electrical Engineer, National Oceanic and Atmospheric Administration, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN 37831.
STUDY AREA
The Missouri Ozark Ameriflux site (MOFLUX) site (38°40’ N, 92°12’ W) is located in the Ozark Border physiographic region at the Baskett Research and Education Area (BREA, owned and managed by the University of Missouri) 30 km SE of Columbia, Missouri, USA. The vegetation at the site, assessed both by long term permanent plot measurements distributed across the BREA (Pallardy and others 1988, Pallardy and Coonley 2005) and from plots placed on spoke-like transects within the footprint of the tower (unpublished), is an oak-hickory forest dominated by white oak (*Quercus alba* L.) and with contributions of several other oak species (black oak, *Q. velutina* Lam.; northern red oak, *Q. rubra* L.; Shumard oak, *Q. shumardii* Buckl.; chinkapin oak, *Q. muehlenbergii* Engelm.; and post oak, *Q. stellata* Wangenh.) and hickories (primarily shagbark hickory, *Carya ovata* [Mill.] K. Koch). A dense understory of sugar maple (*Acer saccharum* Marsh.) is found beneath the canopy, along with eastern redcedar (*Juniperus virginiana* L.) (the latter in localized disturbed areas). Vegetation sampling in the footprint of the eddy flux tower at the site indicated tree density of 583 trees/ha (≥ 9 cm dbh) and tree basal area of 24.2 m²/ha. Canopy height ranges from 17 to 20 m and leaf area index, measured by leaf litter collection, is about 4.2. Dominant soils are a broadly distributed type classified as Weller silt loam and another type “Steep Stony Land” localized to limestone outcrop areas (Kruscekopf and Scrivner 1962). Ridges alternate with relatively gentle side slopes leading to ephemeral streams in shallow valleys with a total local elevation range of 175-245 m across the area. The climate of the area is warm, humid and continental. The monthly mean temperature (1971-2000) is –2.3 °C in January and 25.2 °C in July (http://www.ncdc.noaa.gov/oa/climate/online/ccd/nrmavg.txt). Annual precipitation averages 1023 mm from 1971 to 2000 (http://www.ncdc.noaa.gov/oa/climate/online/ccd/nrmocp.txt). The study site is centered on a SW facing ridge with gently sloping SE- and NW-facing sides surrounded by a basin about 1 km in diameter. The eddy flux tower is located at the top of this elongated ridge roughly in the center of the basin.

MEASUREMENTS
An EC system is installed at a height of 30.48 m at the top of a walkup tower. It consists of a R. M. Young 81000 three-dimensional sonic anemometer (R. M. Young Company, Traverse City, MI, USA) and a LI-7500 open path gas analyzer (LI-COR Inc., Lincoln, NE, USA). Data are recorded at 10 Hz by a personal computer sheltered at the base of the tower. Vertical fluxes of CO₂, water vapor, temperature and momentum are computed every 30 minutes after two-dimensional coordinate rotation to eliminate errors in fluxes attributable to sonic anemometer tilt relative to the terrain surface, despiking to remove spurious extreme values occasionally produced by the sonic anemometer and CO₂ analyzer, and Webb correction of CO₂ concentrations to adjust for the effects of temperature and water vapor fluxes on CO₂ density (Webb and others 1980).

Also in operation is a CO₂/water vapor profile sampling system. Atmospheric CO₂ concentration and water vapor content are measured by a LI-7000 gas analyzer (LI-COR Inc., Lincoln, NE, USA) at heights of 0.15, 0.30, 0.61, 0.91, 1.52, 3.05, 6.1, 9.14, 12.19, 16.76, 22.86 and 30.48 m. Samples are drawn through Teflon tubing progressively from top to bottom in a continuously recurring cycle. These measurements allow continuous monitoring of the dynamic vertical CO₂ gradient within the ecosystem for estimation of CO₂ storage and correction of eddy-covariance flux data to provide Net Ecosystem Exchange (NEE) of CO₂.

Soil respiration is monitored continuously with an automated system that samples eight tip-down chambers of the design by Edwards and Riggs (2003) that are distributed 30-40 m from the tower along the SE slope.

RESULTS AND DISCUSSION
Eddy-covariance measurement of CO₂ flux is based on very fast (10-20 Hz) measurements of both vertical air movement and CO₂ concentration at the tower top (Aubinet and others 2000, Baldocchi and others 1988, Baldocchi 2003). For example, upward air movement away from the canopy combined with a concurrent fall in CO₂ concentration, or downward air movement into the canopy combined with an
increase of CO₂ concentration, indicates depletion of CO₂ of the air below and therefore net CO₂ uptake in photosynthesis. Raw data are usually processed to provide half-hourly values of CO₂ and H₂O flux.

The daily march of EC CO₂ flux data (fig. 1) often shows a distinct pattern. Still air at night results in buildup of CO₂ near the surface by plant and heterotrophic respiration. This dynamic pattern is captured by the profile sampling system which draws air samples from the tower top to the forest floor (fig. 2). Nighttime buildups of CO₂, which can reach 500 μmol/mol or more, are subsequently vented upward (indicated by negative flux values) early the next morning as increasing solar radiation induces increased turbulence and higher daytime wind velocities (fig. 1). Venting is followed by photosynthetic uptake of CO₂ that under well-watered, sunny conditions roughly follows the sinusoidal pattern of solar illumination of the forest canopy. Daytime minimum CO₂ concentrations in the profile are located within the canopy between 5 and 18 m (fig. 2).

Nighttime accumulation of CO₂ near the surface reflects intense respiration from the soil, especially during the growing season (fig. 3A). Soil respiration ultimately depends on the fixed carbon inputs provided by plant litter and carbohydrate translocation to the root system in living trees. However, environmental controls on the process are also quite important. In winter (fig. 3B) low temperatures limit daily mean soil respiration to less than 1 μmol/m²/second, whereas in summer, when soil temperatures may exceed 25 C in the upper soil (fig. 3A), the daily rate may reach 8 μmol/m²/second or more. Soil water content may reduce soil respiration independent of temperature (Hanson and others 2003), but during the wet year of 2004 there was little evidence of such limitation at the Missouri site (fig. 3). Interestingly, heavy rain (in the present study >37 mm over the course of a day) may temporarily restrict loss of CO₂ from the soil surface by the formation of a diffusion cap that presumably arises from filling of the soil pore space with water (see arrows in fig. 3A).

![Diagram of CO₂ flux](image)

Figure 1—Typical diurnal pattern of CO₂ flux derived from eddy-covariance (EC) measurements at the tower top (30.48 m) at the Missouri Ozark Ameriflux site.
Peak EC CO₂ fluxes at the Missouri site reached 35-40 μmol CO₂/m²/second during the 2004 growing season (fig. 4), values that are surprisingly high considering its location in the relatively xeric western reaches of the Central Hardwoods region. These flux values are comparable with flux data for CO₂ from deciduous forest EC sites elsewhere (Baldocchi and others 2001, Curtis and others 2002, Ehman and others 2002, Schmid and others 2000, Wilson and Baldocchi 2001). The data in figure 4 also reinforce the recurring nature of the diurnal pattern described in figure 1.

When EC-based flux rates are adjusted for CO₂ storage in the vertical air column, an estimate of NEE of CO₂ can be derived. Mean daily NEE data for CO₂ from the initiation of measurement in mid-June 2004 through the end of the year are shown (fig. 5). The seasonal pattern of NEE is clearly observable through the leaf-on season which ends by mid-October (Day 290). Interestingly, late growing season NEE was reduced despite a lack of limitation by soil water availability or temperature (e.g., Days 200-250). Modeling of NEE based on photosynthetic process models (Gu and others 1999) did not explain all of this reduction and it is possible that the deviation may be attributable to senescence-related metabolic changes although it precedes any visible signs of autumn coloration, or because of leaf area removal by herbivory. Seasonal variations in foliar photosynthetic capacity consistent with this pattern have been observed in eastern Tennessee by Wilson and others (2000). In early winter, NEE values hover around zero, likely reflecting a balance between some residual CO₂ uptake by the evergreen Juniperus virginiana on the site and wintertime soil respiration (fig. 3B).

The data provided by the suite of instrumentation on this site enable a comprehensive understanding of short-term dynamics and mid-to-long term drivers of forest productivity. Straightforward integration of NEE on an annual basis provides an independent estimate of ecosystem productivity to compare with conventional biometric (e.g., dendrometer band estimates of growth and whole-tree biomass accounting based on destructive sampling) and the status of a particular forest as a source or sink for CO₂. Once
Figure 3—Thirty-five-day traces of soil respiration, soil temperature at 5 cm depth, soil water potential in the upper 30 cm, and precipitation events for the growing season (A) and the dormant season (B) of 2004 at the Missouri Ozark Ameriflux site [arrows in (A) indicate rain events that were associated with dips in soil respiration].
Figure 4—Eddy-covariance (EC) CO₂ fluxes for 5 days in midsummer 2004 at the Missouri Ozark Ameriflux site (compare with figure 1).

Figure 5—Mean daily net ecosystem exchange (NEE) of CO₂ at the Missouri Ozark Ameriflux site based on eddy-covariance CO₂ flux data corrected for CO₂ storage as estimated with the CO₂ profile system.
an adequate data set is in hand, models can be developed that accurately predict CO$_2$ exchange based
on conventional meteorological variables as drivers (Gu and others 1999, Hanson and others 2004). In
this way, CO$_2$ exchange at a regional scale can be estimated for forest ecosystems with similar species
composition. We are also in the process of building biometric data sets against which to contrast annual
NEE data as an independent test of the eddy-covariance method to resolve net carbon exchange in this
forest.

Although this approach to ecosystem–level carbon exchange has much promise, some issues remain to
be worked out. For example, if the topography of the site is dissected and prone to night drainage air
(so-called “complex terrain”) then some CO$_2$ produced at night in still air will “leak” away unmeasured.
Practical and theoretical methods are being developed to deal with these issues (Gu and others 2005).

ACKNOWLEDGMENTS

This paper is a contribution to the Missouri Ozark AmeriFlux Project (MOFLUX, 3ERKP483), a
joint effort between ORNL, the University of Missouri, and NOAA/ATDD. MOFLUX is supported by
the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program,
Environmental Science Division. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of
Energy under the contract DE–AC05–00OR22725. U.S. Department of Energy support for the University
of Missouri (Grant DE–FG02–03ER63683) is gratefully acknowledged.

LITERATURE CITED

EUROFLUX methodology. Advances in Ecological Research. 30:113-175.

Baldocchi, D.D. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past,

Baldocchi, D.D.; Falge, E.; Gu, L. [and others]. 2001. FLUXNET: a new tool to study the temporal and spatial variability of


the 90th Ecological Society of America Annual Meeting, Montreal, Canada, August 7-12, 2005. p. 127, 128.

Curtis, P.S.; Hanson, P.J.; Bolstad, P. [and others]. 2002. Biometric and eddy-covariance based estimates of ecosystem carbon


estimates of carbon sequestration in a mid-latitude deciduous forest. Global Change Biology. 8:575-589.

gricultural and Forest Meteorology. 128:179-197.


Hanson, P.J.; Amthor, J.S.; Waluschkeer, S.D. [and others]. 2004. Oak forest carbon and water simulations: model
intercomparisons and evaluations against independent data. Ecological Monographs. 74:443-489.

Hanson, P.J.; O’Neill, E.G.; Chambers, M.L.S. [and others]. 2003. Soil respiration and litter decomposition. In: Hanson, P.J.;


