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Abstract—Two methods of training data collection for automated image classification were tested in Virginia as part of a
larger effort to develop an objective, repeatable, and low-cost method to provide forest area classification from satellite
imagery. The derived forest area estimates were compared to estimates derived from a traditional photo-interpreted, double
sample. One method used maplets digitized from ancillary imagery. Seed pixels, the other approach, used only available
ground plot data and the image to be classified. Both methods of training data collection resulted in classification accuracy
approaching 89 percent, and area estimation precision surpassing the FIA standard of 3 percent per million acres of
timberland. However, the precision estimate was met in large part from the additional ground truth data collected
supplemental to the national standard sample frame of one plot per 6,000 ac. The seed pixel approach is recommended
over maplets, because it does not require ancillary imagery and is less costly in analyst time.

INTRODUCTION
The Agricultural Research, Extension and Education Reform
Act of 1998 called upon the Forest Service to develop and
implement a strategy to improve the performance of the
Forest Inventory Analysis program. A study by the RAND
Corporation recommended that FIA explore utilization of
Landsat Thematic Mapper (TM) data for area measurements
on a national scale (Peterson and others 1999). Rich Guldin,
Director of Science Policy, Planning, Inventory, and Infor-
mation, USDA Forest Service, recently set the goal of
completing “ . . . the transition from reliance on aerial
photography to use of remotely sensed satellite imagery by
the end of FY 2003” (Guldin 2000).

The first phase of this transition to operational satellite
image utilization will be its use to produce forest area
estimates and provide Phase I stratification for the ground
sample.

If classification of raw TM data is to be used on an opera-
tional basis for FIA area estimation, two things are required:

1. Image analysis techniques that are low-cost, fast,
objective, and repeatable.

2. Standard protocols for the collection of training and
validation reference data.

If reference data protocols can be based upon existing field
protocols, with little or no modification, this transition can be
smooth and cost-effective.

This paper reports on work done in Virginia using an
automated classification procedure, Landsat TM imagery,
and training data collected from the FIA data sampling
frame. The objectives of this work were

1. To further develop an objective, repeatable, and low cost
process to obtain forest/nonforest stratification (classifica-
tion) with TM imagery.

2. To use this stratification in conjunction with Phase II and
III ground truth to provide adjusted forest land estimates.

3. To develop more objective, low-cost and effective
methods of obtaining training data for use in the classifi-
cation process.

4. To compare the precision of forest area estimates
obtained using classified imagery with those obtained
through traditional photo-interpretation methods and
double sampling.

DATA
A Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
scene covering eastern Virginia, WRS Path 15, Row 34,
acquired on March 3, 2000, was used for this analysis. The
scene was geo-rectified using 30 ground control points and
a first-order polynomial model. The root mean square error
(RMSE) for the geo-rectification model was 11.8 m. For a
sample of 10 independent ground control checkpoints, the
RMSE was 11.9 m. Spectral bands 1–5 and 7 were used for
the analysis.

Ground reference data came from annual forest inventory
field measurements made in the years 1997-2000 in
Virginia. At the time of analysis, 978 Phase II and 24 Phase
III ground plots were available, representing slightly > than
three of the five panels of the 5-year annual sampling frame.
Also available were land use classifications from 285
deleted plots (ground plots for the last survey that had been
dropped from the five-panel system but remeasured by
Virginia crews). Precise coordinates from differentially
corrected GPS observations were collected for all of these
points, with an estimated accuracy of better than 10 m. Also
available were 753 intensification plots, where aerial photo-
interpreted land use points were verified on the ground by
field crews. Coordinates for the intensification plots were
digitized using 10 m SPOT panchromatic imagery, dated
1993 to 1994. In total, 2,040 land use ground truth points
were available. For collections of training data, 430 Phase II
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plots and 24 Phase III plots were used. Of the remaining
plots, 131 could not be used for validation due to clouds or
bad ETM+ data, leaving 1,455 plots for validation. The
resulting validation sampling intensity was one point per
4,600 ac. Table 1 summarizes the training and validation
ground truth data.

The entire scene was used in the classification process;
however, a 30 county subset of the image was used for
stratification and land use estimation, because the county is
the smallest unit for each that estimates are traditionally
derived. The 30 county subset contains 5.2 million ac of
land, and was 67.1 percent forested, with 3.38 million ac of
forest land in 1992, the date of last survey. The entire scene
covers approximately 7.6 million ac, with a similar proportion
of forest land.

Available for comparison are preliminary, county-level, forest
area estimates obtained using the traditional double-
sampling technique with a large sample of photo-interpreted
points, corrected with ground truth from both Phase II and
intensification points. For the 30 county subset, the large
sample of photo-interpreted points was 41,275 in size. The
standard errors of these estimates were estimated using the
formulae of Li and others (1992).

ITERATIVE GUIDED SPECTRAL
CLASS REJECTION
Iterative Guided Spectral Class Rejection (IGSCR) is a
hybrid classification method that builds and labels spectral
classes for use in supervised approaches such as the
maximum likelihood classifier (Wayman and others 2000).
The IGSCR algorithm is, in essence, an objective and
guided “cluster busting” (Jensen and others 1987, Rutchey
and Vilchek 1994) approach that uses specific rejection
criteria and large numbers of training pixels.

The IGSCR method accepts and labels a spectral class
when it meets the desired inclusion threshold and rejects it if
it does not. In this case, the inclusion threshold required at
least 90 percent homogeneity within spectral classes and a
minimum of at least 20 training data pixels per class. All
pixels in spectral classes meeting the 90 percent homoge-
neity/minimum pixel test are labeled and removed from the
original raw image. The unlabeled pixels from the raw image
are then clustered into new spectral classes and the next
iteration begins. Each of the iterations increases the number
of pixels (and spectral classes) with known identity and
decreases the number of unclassified training pixels. Once

the iterations are complete (based on user-defined param-
eters such as the percentage of pixels classified or the
classification of all training pixels), the known spectral
classes are combined into a single signature file. The pure
spectral classes are then used with the maximum likelihood
decision rule to classify the image.

TRAINING DATA
Maplets
Classifications of forest and nonforest land use, termed
maplets, were created via heads-up digitizing for relatively
small landscape areas within the scene. The image back-
drops used were digital orthophoto quarter quadrangles
(DOQQ), obtained from the U.S. Geological Survey. DOQQs
with image acquisition dates of 1994-1996 were available for
24 of the existing 26 Phase III plots in the pilot study area.
Twenty-four 1 km x 5 km maplets were created, approxi-
mately centered on each of the 24 Phase III plots. Three
categories (forest, nonforest, and uncertain) were used. Any
natural or cultural feature as large as a TM pixel (or that
dominates the spectral response of a TM pixel) was digi-
tized. Visual inspection of the Landsat 7 ETM+ imagery
(panchromatic, multi-spectral, and pan-sharpened) was
conducted to determine whether the area mapped had
changed since the date of the DOQQ. Areas that changed
were edited.

Table 2 summarizes the amount of training data generated,
expressed as percent of the image. Water was not
sufficiently represented in the maplet sample so additional
training data for water were collected visually from the TM
image.

Advantages to the maplet process include (1) their potential
utility for the FIA program for other uses and (2) the ability to
accurately map areas that are traditionally problematic in TM
forest/nonforest classifications such as low-density residen-
tial areas and recent harvests. The primary disadvantages
are (1) the subjective, analyst intensive nature of the
process and (2) the lack of national availability of DOQQs or
equivalent imagery. These disadvantages led us to examine
a process that has high potential to be objective, repeatable,
and highly automated. This process uses a subset of FIA
plot centers as “seed pixels” to segment areas of the image
into training data.

Seed Pixels
The seed pixel approach started with a random selection of
500 Phase II plots to be used in obtaining training data.

Table 1—Ground plot location numbers for validation and
training data from Phase ll, Phase lll, and intensification plots

Source Total      Training     Unusable       Validation

Phase II plots 978 255 69 654

Phase III plots 24 23 1 —

Deleted Phase II 285 152 18 115

Intensification 753 — 67 686

  Total 2,040 430 155 1,455

Table 2—Training data amounts for IGSCR forest/
nonforest classification of Landsat 7 Scene 15/34,
March 3, 2000

    Maplet        Seed pixels

Total (percent of image) 0.52 0.88

Composition (percent of total)

  Forest 50.1 69.6

  Nonforest 15.3 10.1

  Water 34.6 20.3
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Seventy of these had to be dropped due to plot location in
apparent mixed-land-use pixels, locations under clouds in
the imagery, or location on some bad data lines in the
image, leaving 430 plots. The sampling intensity for seed
pixel initiation was one point per 13,200 ac.

At each of the FIA plots, the analyst located the plot center
on the image, visually confirmed the land use call, and
initiated a seed pixel. ERDAS Imagine software’s seed pixel
function works by appending adjacent pixels that are within a
specified spectral distance of the mean of the pixels already
within the cluster. The only analyst input required is the
decision as to what maximum spectral distance should be
used. The analyst varied the spectral distance parameter in
order to create as large a cluster of pixels that appeared to
be clearly within the same land use condition as possible.
Development of a more objective and automated approach
to seed pixel reference data generation, would help speed
this process.

Table 2 summarizes the amount of training data generated
by the seed pixel methods as well. Again, water was not
adequately represented and the same ancillary water
reference data were used as in the maplet training
approach.

AREA ESTIMATION
For the photo-interpreted double sample, forest land
percentage estimates and standard errors were computed
with the formulae of Li and others (1992). Since the esti-
mates obtained from image classification are “wall-to-wall”,
or a complete enumeration of the landscape, the double
sampling estimates are not appropriate for estimating forest
area. Instead, we used the approach for adjusted map
marginals formulated by Card (1982).

RESULTS
Several classifications with different starting parameters,
specifically the number of ISODATA classes allowed at the
first iteration, were tried and all achieved very similar results.
Hence, we will report here only the results of 4 classifica-
tions, those starting with up to 300 ISODATA classes. Two
such classifications were made of the entire scene, and 2
were made for just the 30 county subset. Within each image
extent, one used maplets for training data and the other
used seed pixel training data. Whole and subset results
were very similar. For simplicity and ease of comparison with
double-sample methods, we report only the subset results
starting with 300 ISODATA classes.

Table 3 presents the Kappa statistics, overall map accuracy,
and producers and user’s accuracy for the forest and
nonforest classes. Overall map accuracy ranged from 88.5
to 88.8 percent.

Table 4 presents the unadjusted and adjusted map marginal
estimates of percent forest land, with standard errors. Also
presented are results from the traditional photo-interpreted
double-sampling estimation (PI). The PI estimate for the 30
county subset was 64.51 percent forest, with a standard
error of 0.82 percent. On a per million acres of forest land
basis, the standard error is 1.51 percent, well under the
national FIA standard of 3 percent per million acres.

For the IGSCR classifications, the adjusted map marginal
estimates are very close to the PI estimates: 65.43 percent
(maplet) and 64.51 (seed pixel). As expected, the standard
errors are higher: 1.06 percent (maplet) and 1.05 percent
(seed pixel). On a per million acres of forest land basis, at
1.95 percent (maplet) and 1.93 percent (seed pixel), the
estimates still surpass the FIA precision goal of 3 percent.

Note the 5 to 6 percent overestimate of forest land by the
unadjusted map marginals (table 4). This suggests that the
IGSCR method is overclassifying forest. Knowledge of the
area and visual inspection of the image suggest that the
major problems are urban and suburban areas with tree
cover similar to areas of forest land use. This suggests that
masking of known urban/suburban areas could improve the
accuracy of the IGSCR classifications.

DISCUSSION
The IGSCR classification method performed well in estimat-
ing forest land area using adjusted map marginals. The
precision of the estimates exceeded the FIA national

Table 3—Classification accuracy for forest/nonforest by
photo-interpretation, and various IGSCR classifications
of Landsat 7 Scene 15/34, March 3, 2000

        Photo-   IGSCR   IGSCR
Accuracy  interpretation   maplet   seed pixel

Overall 93.8 88.8 88.9

User’s
    Forest 94.5 87.9 87.3
    Nonforest — 90.8 92.6

Producer’s
    Forest — 95.3 96.4
    Nonforest — 77.8 76.3

Kappa
    statistic — 0.7534 0.7541

  Image Subset

    - - - - - - -  - - - - Percent - - - - - - - - - - -

Table 4—Estimates and standard errors of forest land for 
30-county subset of Scene 15/34, from photo-interpreted 
double sampling and IGSCR image classifications

    IGSCR      IGSCR
    maplet      seed pixel

Unadjusted
  Map marginals 65.26 71.57 70.36

Adjusted 
  Map marginals 64.51 65.43 64.51

Standard error 0.82 1.06 1.05

Standard error 1.51 1.95 1.93
  (per million acres)

 - - - - - - - - - -Percent- - - - - - - - - - - 

Photo-interpreted
double sample
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standard of 3 percent per million acres of forest land. The
method compared favorably to photo-interpreted double
sampling, although with some loss of precision.

Within the limits of this case study, the IGSCR method
proved to be objective and repeatable. Since this work was
still developmental, operational costs were not estimated.
However, we feel that its cost should be comparable to, if not
considerably less than, photo-interpretation and supervised
image classification approaches.

Two different protocols for collection of training data were
examined and both performed equally well. Further work on
the IGSCR method could possibly improve the current
classification accuracy (89-90 percent) to approach that of
the photo-interpretation methods (93-94 percent).

The amount of training data collected by either method was
less than one percent of the image. Previous IGSCR
development work (Wayman and others 2000) used 3 to 6
times the amount of training data, however, the classifier’s
performance was not any better. This result implies that
possibly even less training data could be used. Furthermore,
the maplet and seed pixel approaches had significantly
different proportions of forest and nonforest training data
(see table 2), but that seemed to make no difference in
accuracy of classification, either overall or by class.

This work has shown that either maplets or seed pixels can
work well as training data. Given the extra work involved in
creating maplets, we do not recommend this approach
unless the maplets are desired for other reasons, such as
examination of landscape patterns. The seed pixel approach
requires no additional imagery or ground truth other than a
portion of the Phase II plots. Higher precision can be gained
by either better classification accuracy or more ground
validation points. Focusing on problem classes, e.g. subur-
ban areas and recent harvests, could narrow the accuracy
gap.

The IGSCR classifications, and resulting forest land esti-
mates, meet the FIA precision standard of 3 percent per
million acres. Much of the credit for reaching this goal,
however, should be placed on the additional ground truth
provided beyond Phase II and Phase III ground plots. In this
study, deleted plots and intensification plots were also used.
If this same project had been limited to one ground truth plot
per 6,000 ac, the estimated standard errors per million acres
of forest land would have been approximately 2.7 percent for
the PI double sample and 3.5 percent for the IGSCR
classifications. FIA programs should consider continuing, or
initiating, land use intensification samples to achieve land
use precision goals.
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