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Abstract—Uncertainty in diameter growth predictions is attributed to three general sources: measurement error or sampling
variability in predictor variables, parameter covariances, and residual or unexplained variation around model expectations.
Using measurement error and sampling variability distributions obtained from the literature and Monte Carlo simulation
methods, the uncertainty in 10-year diameter growth model predictions is estimated as are its effects on annual basal area
estimates obtained using an annual inventory system. The results indicate that although annual diameter growth is difficult
to predict precisely, the effects of the uncertainty in the growth predictions are greatly attenuated when diameter estimates
are aggregated to estimate plot basal area and mean basal area over all plots.

INTRODUCTION

The Forest Inventory and Analysis (FIA) program of the
USDA Forest Service has initiated an annual forest inventory
system featuring measurement of a proportion of plots each
year (McRoberts 1999). One approach to obtaining annual
inventory estimates with this system is to use growth models
to update to the current year data for plots measured in
previous years and then base estimates on the data for all
plots. If the updating procedure is sufficiently unbiased and
precise, this approach provides nearly the same precision as
using all plots but without the adverse effects of using out-
of-date information. With this estimation approach in mind, a
prototype set of individual tree, diameter at breast height
(DBH) (1.37 m aboveground) growth models has been
constructed and calibrated for use in updating FIA plot
information.

The data used to calibrate the models were taken from
measurements of forested Minnesota FIA plots for the 1977
(Spencer 1982) and 1990 periodic inventories (Miles et al
1995). Only trees alive and measured in both inventories
were used. For each tree, average annual DBH growth was
used as a surrogate for annual growth and was calculated
as the ratio of the difference in DBH measurements for the
two inventories and the number of growing seasons be-
tween measurements. Predictor variables were average
DBH for the measurement interval, initial crown ratio (CR),
initial crown class (CC), average plot basal area (BA),
average plot basal area in trees larger than the subject tree
(BAL), and physiographic class (PC). BA and BAL represent
the sum of cross-sectional areas of live tree boles at breast
height, and, unless otherwise noted, references to both BA
and BAL are assumed to have been scaled to a per unit
area basis.

The DBH growth models consist of the product of two
components, an average component corresponding to
regional average DBH growth with respect to DBH and a
modifier component that adjusts DBH growth predictions in
accordance with local plot and tree conditions. The average
component is based on a 2-parameter gamma function with

a constant multiplier and uses DBH as the predictor variable,
while the modifier component consists of the product of
exponential factors of which each incorporates a single
predictor variable. Each factor in the modifier product
expresses a multiplicative effect on growth predictions in
terms of departures from regional or ecosystem averages
for a single predictor variable. The general form of the DBH
growth model is

E(ADBH) = Ave(DBH)*Mod(CR,CC,BA BAL,PC) [3a]

where E(.) denotes statistical expectation, ADBH is annual
DBH growth,

Ave(DBH) = R DBHRB, exp(3, DBH) [3b]
and

Mod(CR,CC,BA,BAL,PC)
= exp[B (CR-C )3 (CC-C )+R (BAL-C)
+ B (BA-C )+R (PC-C)+B (PC-C Y, [3c]

where the Bs are parameters to be estimated and the Cs are
constants representing regional or ecosystem averages for
the corresponding predictor variables. Using iteratively
reweighted least squares techniques, the model was fit
separately for individual species. If a parameter was not
statistically significantly different than zero, its estimate was
fixed at zero. Lessard and others (submitted) provide details
of the fitting procedure and verification and validation of the
models.

THE ANNUALIZED INVENTORY DATABASE

An annualized database of plot and tree variables was
constructed to evaluate the models. The database included
measurements from forested FIA plots for both the 1977
(Spencer 1982) and the 1990 (Miles and others 1995) USDA
Forest Service periodic inventories of Minnesota. Plots
included in the 1977 inventory were actually measured
between 1974 and 1978, while plots included in the 1990
inventory were actually measured between 1986 and 1991.
Because additional investigations were necessary to

1 Paper presented at the Second Annual Forest Inventory and Analysis (FIA) Symposium, Salt Lake City, UT, October 17-18, 2000.

2 Mathematical Statistician and Research Forester, USDA Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN

55108, respectively.



estimate the uncertainty in model parameters estimated for
each species, the data were further restricted to plots that
included only the 15 most common tree species in Minne-
sota, i.e., if the species of any tree on a plot was not among
the 15 most common species, the data for that plot was
excluded from the database. The resulting database
included data for 38,156 trees on 1,951 plots.

Plots measured for the 1977 and 1990 Minnesota invento-
ries consisted of 10 subplots of which each is described as
a variable radius plot due to the use of point sampling
techniques. With these techniques, trees are selected with
probability proportional to cross-sectional area rather than
proportional to the frequency of occurrence in the population
(Myers and Beers 1971). With point sampling, the number of
trees in the population represented by a sample tree, termed
the tree factor, varies by tree and is calculated as a scaling
constant divided by the tree DBH. Tree factors are used to
expand the measurements of sample trees to per unit area
estimates.

Based on observations of individual trees with DBHs of at
least 12.7 cm, an 11-year database was constructed that
consisted of annual values for all model predictor variables
and annual status with respect to survival, ongrowth,
mortality, and harvest for each tree. Construction of the
database required distributing total growth between invento-
ries over varying numbers of years for individual trees in
each of four categories: (1) survivor trees that were alive
and measured at both inventories; (2) ongrowth trees that
attained the 12.7-cm minimum DBH between inventories; (3)
mortality trees that died between inventories due to causes
other than harvest; and (4) harvest trees that were removed
between inventories. For survivor trees, average annual
DBH growth was calculated by dividing the total growth
between inventories by the number of growing seasons
between measurements. Measured DBH for the 1977
inventory was assigned to year 0, and DBHSs for the 10
subsequent years were calculated by adding the average
annual growth to the previous year's DBH. Because
ongrowth trees were measured only in the 1990 inventory,
DBH measurements for these trees were assigned to year
11, and DBHs for previous years back to year 0 were
sequentially calculated by subtracting from current DBHs
predictions of annual DBH growth obtained from the DBH
growth models. Ongrowth status for these trees was
designated in the year the tree attained the 12.7-cm
minimum DBH. For mortality trees, a year of mortality
between 1 and 10 was randomly selected from a uniform
distribution and assigned to the tree independently of years
of mortality assigned for other trees on the same plot. For
harvest trees, a year of harvest between 1 and 10 was
randomly selected from a uniform distribution and assigned
to all trees harvested on the sample plot. For both mortality
and harvest trees, DBHs measured in the 1977 inventory
were assigned to year 0, and DBHSs for subsequent years
were calculated by adding previous year's DBHs and
predictions of annual DBH growth obtained from the DBH
growth models.

Calculation of unbiased estimates of change in BA (ABA) is
difficult using data from variable radius plots (Van Deusen
and others 1986). For these analyses, tree factors corre-
sponding to year O were calculated for all trees and then
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held constant for the succeeding 10-year interval. Thus,
annual database values of BA and BAL were calculated
using the database of annual tree DBHs and the constant
tree factors.

Although the procedures used to construct the annual
database create somewhat greater uniformity in annual DBH
growth, ongrowth, mortality, and harvest than would be
observed, they represent a reasonable alternative. First,
most other alternatives for distributing annual DBH growth or
survivor trees would require either annual remeasurement or
destructive sampling of all trees. Second, in the absence of
precise knowledge of annual patterns of ongrowth, mortality,
and harvest, uniform distributions represent overall long-
term patterns that are reasonable for 10-year intervals.
Finally, the impact on estimates of uncertainty, the primary
entity of interest for this study, is expected to be minimal.

THE SIMULATION PROCEDURES

Monte Carlo simulations were used to obtain estimates of
uncertainty for model parameter estimates; 10-year ADBH
and DBH predictions, plot BA estimates, and mean plot BA
estimates; and annual inventory estimates of mean plot BA.
Before the simulations could be implemented, uncertainty
had to be quantified for three components: tree- and plot-
level predictor variables, residual variability, and parameter
estimates. In all situations, uncertainty in model predictor
variables was assumed to be non-negligible.

Uncertainty in Predictor Variables

Values of predictor variables are based on FIA field crew
measurements and are subject to uncertainty. The tree-level
predictor variables, DBH, CR, and CC, correspond to the
measurement of a single physical entity, while the plot-level
variables, BA, BAL, and PC, are sample estimates. Distribu-
tions for measurement errors for the tree-level predictor
variables were obtained from the literature. McRoberts and
others (1994) reported the results of a study in which 9-10
FIA field crews independently measured the same plots.
They estimated a curve for describing the standard deviation
of DBH measurements as a function of mean DBH. They
also reported that distributions of ocular estimates of CR as
percentages in the 0-1 range often deviated “0.3 around the
median crew estimate. Nichols and others (1991) reported
that when crews returned to plots later in the same growing
season to obtain second ocular estimates of CC, 80 percent
of estimates were unchanged while the remaining 20
percent were evenly distributed in the two adjacent classes.
Uncertainty in BA and BAL estimates was simulated by
using DBH measurements incorporating simulated DBH
measurement error to calculate BA for each plot and BAL for
each tree on each plot. Finally, because of the non-unifor-
mity of plot soil, topographic, and vegetation conditions, PC
is also subject to uncertainty due to sampling variability.
However, because no empirical estimates of the sampling
variability for PC are available, an arbitrary assumption was
made that the coefficient of variation for PC is 10 percent.

Residual Variability

Estimates of residual variability were obtained as by-
products of calibrating the models. Residuals were assumed
to follow a Gaussian distribution with zero mean but with
heterogeneous variances. The standard deviations of the



distributions of residuals were found to be adequately
described as follows:

E[In(Sre)] = ast+azln(ADBH), [4]

where E(.) denotes statistical expectation of the quantity
between the parentheses, ém, is the sample estimate of ém,
and ADBH is predicted diameter growth from the models.

Uncertainty in Model Parameter Estimates

Model parameter covariances reflect uncertainty in the
parameter estimates and must be included as a component
of total uncertainty whenever model predictions are involved.
When the models are relatively simple (eg., linear) and the
uncertainty in predictor variables is negligible, parameter
covariance estimates may be easily obtained using analyti-
cal methods. However, when the models are complex,
nonlinear, and rely on predictors variables whose uncertainty
cannot be assumed to be negligible, then Monte Carlo
simulations are appropriate, if not also necessary, for reliably
estimating these covariances. Failure to incorporate the
uncertainty in the predictor variables results in underesti-
mates of parameter covariances and, therefore, in underes-
timates of model prediction uncertainty. Using the distribu-
tions of uncertainty for the predictor variables and residual
variation as previously described, distributions of model
parameter estimates were obtained using a 4-step Monte
Carlo procedure:

1. Simulated ADBH observations were obtained as the sums
of two components: ADBH predictions obtained from the
models using the parameter estimates obtained by
calibrating the models to the observed data, and residuals
randomly selected from a Gaussian distribution with zero
mean and standard deviations obtained using equation [4]
and the ADBH predictions.

2. Simulated values for predictor variables were obtained as
sums of two components: observed values of the vari-
ables and either measurement error for DBH, CR, and
CC, or sampling variability for PC obtained by randomly
selecting values from the distributions previously de-
scribed; using the simulated DBH observations, BA was
calculated for each plot and BAL was calculated for each
tree on each plot.

3. Model parameter estimates were obtained by fitting the
models to the simulated ADBH observations obtained
from Step 1 using the simulated values of the predictor
variables obtained from Step 2; the resulting parameter
estimates were recorded.

4. Distributions of model parameter estimates were obtained
via 250 repetitions of Steps 1-3.

Uncertainty Estimation

Estimates of the uncertainty in ADBH and DBH predictions
and in derived BA variables were based on Monte Carlo
simulations. The essence of the simulation procedures,
explained in detail below, is to initialize plot and tree condi-
tions using the annualized database of values, add random
variability where appropriate to mimic uncertainty, use the
models to predict annual DBH growth, record estimates at
fixed time intervals, and repeat the process a large number
of times to create a distribution of estimates.
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Two approaches to evaluating uncertainty were used. The
ACCUMULATING approach produces DBH predictions for
each of 10 consecutive years by sequentially predicting
ADBH using the models and adding the prediction to
previous year's DBH to obtain current year's DBH. Annual
estimates of plot BA, mean plot BA, and the standard error
of mean plot BA are obtained and are designated the
MODEL10 estimates. Uncertainty in estimates obtained with
this approach represent the accumulated uncertainty in DBH
predictions over the 10-year prediction interval.

The second approach is designated the ANNUAL approach
and is intended to mimic the annual inventory system being
implemented by the FIA program of the USDA Forest
Service. The sampling design for this system features an
equal probability grid of field plots which has been system-
atically divided into five interpenetrating, non-overlapping
panels. Each year the plots in a single panel are measured
with panels selected on a 5-year rotating basis. To mimic the
annual inventory procedures, the plots included for these
analyses were ordered with respect to their plot numbers
and distributed among five equal-sized panels by systemati-
cally assigning every fifth plot to the same panel. Because
FIA plot numbers had been assigned sequentially on the
basis of the geographic locations of the plots, the panel
assignments approximated the systematic, interpenetrating
feature of the annual inventory sampling design. Annual
inventory estimates of mean plot BA and the standard error
of mean plot BA were obtained using three methods: (10 the
SAMPLE?20 estimates were based on measurements for the
current year's 20-percent panel of plots; (2) the MOVING
estimates were based on the most recent measurements for
all plots; and (3) the UPDATE estimates were based on
measurements for the current year's 20-percent panel of
plots and updated information obtained using the growth
models for the four panels of plots measured in previous
years.

Estimates of the uncertainty in ADBH and DBH predictions
and estimates of plot BA for the ACCUMULATING approach
and in estimates of mean plot BA and the standard error of
mean plot BA with both approaches were obtained using a
4-step Monte Carlo procedure:

1. Year O:

a. Measurement of all plots was simulated by adding the
year 0 values of DBH, CR, CC, and PC from the
annualized database and simulated measurement
errors and sampling variability obtained by randomly
selecting values from the distributions previously
described; simulated DBH observations were
recorded for each tree.

b. Simulated values of BA and BAL were obtained from
the simulated DBH observations by calculating BA for
each plot and BAL for each tree on each plot; plot BA,
mean plot BA, and the standard error of mean plot BA
were calculated and recorded.

c. A set of model parameter estimates for each species
was randomly selected from the distributions previ-
ously constructed.



2.Subsequent years:

a. ACCUMULATING approach. Simulated observations
of ADBH for all trees were obtained as the sums
of previous year's DBHSs, predicted ADBHs,
and residuals randomly selected from Gaussian
distributions with zero mean and standard deviations
obtained using [4] and predicted ADBHs; the
simulated observation of DBH and the difference
between current and previous years' simulated DBH
observations were recorded for each tree.

b. ANNUAL approach.

(i) For panels selected for measurement, field
measurement was simulated for all plots by
replacing values for each tree with values from the
annualized database for the appropriate year and
adding measurement errors and sampling vari-
ability randomly selected from the appropriate
distributions.

(i) For panels not selected for remeasurement, an
updated value for DBH for each tree was obtained
as the sum of previous year's DBH, predicted
ADBH, and a residual randomly selected from a
Gaussian distribution with zero mean and standard
deviation obtained from [4] and predicted ADBH.

c. For each of the four estimation methods, BA was
calculated for each plot, BAL was calculated for
each tree on each plot, and mean plot BA and the
standard error of mean plot BA were calculated; plot
BA, mean plot BA, and the standard error of mean
plot BA were recorded for all four methods.

3. Step 2 was repeated 10 times to obtain predictions and
estimates for all four methods for years 1-11.

4. Steps 1-3 were repeated 250 times to obtain distributions
of DBH and ADBH predictions, plot BA estimates, and
estimates of mean plot BA and the standard error of
mean plot BA for each method for each year.

ANALYSES

Standards of Comparison

The standards of comparison for evaluating bias and the
contribution of uncertainty in model predictions to the
uncertainty in estimates of mean plot BA were the annual
estimates of mean plot BA and the standard errors of mean
plot BA obtained from the annualized database values. For
comparison purposes, these estimates represent a current
year sample of the entire geographic area under consider-

ation and are regarded as being without measurement error.

Estimates based on these values use 100 percent of the
sample plots and are designated the SAMPLE100 esti-
mates. Because the DBH values on which the SAMPLE100
estimates are based are regarded as having no uncertainty,
any uncertainty in the SAMPLE100 estimates is due simply
to sampling variability of trees on plots and BA estimates
among plots.

ACCUMULATING Approach

Uncertainty in ADBH and DBH predictions for individual
trees, estimates of plot BA, and MODEL10 estimates of
mean plot BA was quantified using the distributions of
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simulated estimates. Bias in the MODEL10 estimates of
mean plot BA and the standard error of mean plot BA is
evaluated by comparing these estimates to the comparable
SAMPLE100 estimates. Differences between the medians of
the distributions of MODEL10 estimates of the standard
error of mean plot BA and the SAMPLE100 estimates
quantify the effects of uncertainty in model predictions of
DBH on the uncertainty of mean plot BA.

ANNUAL Approach

Bias and uncertainty in the annual inventory estimates of
mean plot BA and estimates of the standard error of mean
plot BA were evaluated using the medians of the distribu-
tions of simulated estimates. Comparisons of median
estimates of mean plot BA for the SAMPLE20, MOVING,
and UPDATE methods to the annual SAMPLE100 estimates
of mean plot BA provide the bias check. Comparisons of the
medians of distributions of estimates of the standard error of
mean plot BA for the UPDATE method to the SAMPLE100
estimates reveals the effects of uncertainty in model
predictions on annual inventory estimates of mean plot BA.

RESULTS

The adequacy of the 250 simulations was checked by
evaluating the stability of coefficients of variation for the
annual MODEL10 estimates of plot BA. For all plots, these
coefficients of variation had stabilized by 100-150 simula-
tions and were virtually unchanged for the final 50
simulations.

ACCUMULATING Predictions and Estimates

Histograms of coefficients of variation for 10-year DBH and
10-year DBH predictions indicate that although the median
coefficient of variation for ADBH was relatively large,
approximately 0.20, the median for DBH was small, approxi-
mately 0.02 (fig. 1). Thus, 10-year DBH may be predicted
quite precisely, even though 10-year ADBH is difficult to
predict precisely. This result is attributed to two factors: first,
as a component of 10-year DBH predictions, ADBH is
relatively small compared to the other component, initial
DBH; and second, the larger component, initial DBH, has
little uncertainty, because DBH measurement error is small.

Bias in the MODEL10 estimates of mean plot BA was
evaluated by comparing the medians of the distributions of
the MODEL10 estimates of mean plot BA to the
SAMPLE100 estimates (table 1). The Wilcoxon Signed
Ranks test (Conover 1980) detected no statistically signifi-
cant differences (a=0.05) between the MODEL10 medians
and the SAMPLE100 estimates. This result is consistent
with observations that the medians of the MODEL10
estimates are in close proximity to the SAMPLE100 esti-
mates and that they fall within a 2-standard error confidence
interval around the SAMPLE100 estimates (fig. 2).

The medians of the distributions of the MODEL10 estimates
of the standard error of mean plot BA were only slightly
larger than the SAMPLE100 estimates. This result suggests
that uncertainty in model predictions of ADBH has only a
slight negative impact on the uncertainty in estimates of
mean plot BA (table 1).
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Figure 1—Distributions of simulated ADBH and DBH predictions.

ANNUAL Approach

Bias in the annual inventory estimates of mean plot BA was
evaluated by comparing the medians of the distributions of
the SAMPLE20, MOVING, and UPDATE estimates to the
SAMPLE100 estimates (fig. 3, table 1). The medians of the
SAMPLEZ20 estimates deviated considerably from the
SAMPLE100 estimates due to the SAMPLE20 small sample
size, while the medians of the MOVING estimates exhibited

Table 1—Mean plot basal area estimates
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Figure 2—Annual BA means obtained from DBH predictions.

consistent bias due to the trend in the SAMPLE100 esti-
mates. The medians of the distributions of the UPDATE
estimates track the SAMPLE100 estimates quite closely, a
result confirmed by the failure of the Wilcoxon Signed Ranks
test to detect statistically significant differences (a=0.05).

The medians of the distributions of the UPDATE estimates of
the standard error of mean plot BA were only slightly larger
than the SAMPLE100 estimates, again indicating that
uncertainty in model predictions of DBH has only a slight
negative impact on the uncertainty of annual inventory
estimates of mean plot BA.

SAMPLE100 MODEL10 SAMPLE20 MOVING UPDATE
Year Mean SE Mean SE Mean SE Mean SE Mean SE
ft? /ac
0 55.72 0.85 55.74 0.86 55.72 0.85 55.72 0.85 55.72 0.85
1 57.17 0.87 5751 0.87 60.12 2.02 56.22 0.86 57.79 0.88
2 58.26 0.87 58.87 0.88 59.57 1.97 57.37 0.86 59.20 0.88
3 59.35 0.87 60.23 0.88 57.04 194 57.59 0.87 60.61 0.88
4 59.84 0.87 61.23 0.89 61.01 1.92 58.50 0.87 61.08 0.89
5 60.80 0.90 62.01 0.91 59.45 1.85 59.44 0.87 61.98 0.91
6 61.87 0.92 62.85 0.93 64.33 2.16 60.28 0.89 62.87 0.93
7 63.08 0.95 63.65 0.95 63.04 2.16 60.97 0.90 63.97 0.96
8 64.66 0.98 64.81 0.97 63.14 224 62.19 0.93 65.45 0.99
9 66.33 1.01 65.85 1.00 68.92 2.26 63.78 0.96 66.94 1.02
10 68.48 1.07 67.14 1.07 67.60 2.24 65.50 0.99 68.93 1.07
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Figure 3—Annual BA means obtained from annual inventory system.

CONCLUSIONS

Two conclusions emerge from this study. First, even though
ADBH is relatively difficult to predict precisely, 10-year
predictions of DBH were quite precise. This conclusion is
partially attributed to the observation that 10-year ADBH is
generally a relatively small component of 10-year DBH. The
second conclusion is that the uncertainty associated with
model-based updating technique had only a slight negative
impact on the uncertainty of 10-year estimates of plot BA,
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and 10-year and annual inventory estimates of mean plot
BA. For the mean plot BA estimates, this conclusion is
partially attributed to the observation that DBH prediction
uncertainty is relatively small compared to natural variability
among estimates of plot BA. Acknowledgment is made,
however, that a complete updating system also requires
techniques for predicting the survival, regeneration, and
removal of trees, components that are not considered in this
study. Nevertheless, the study demonstrates that sufficiently
unbiased and precise updates of DBH may be obtained.
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