A NONPARAMETRIC GEOSTATISTICAL METHOD FOR ESTIMATING
SPECIES IMPORTANCE!
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Abstract—Parametric statistical methods are not always appropriate for conducting spatial analyses of forest inventory
data. Parametric geostatistical methods such as variography and kriging are essentially averaging procedures, and thus
can be affected by extreme values. Furthermore, non normal distributions violate the assumptions of analyses in which test
statistics are generated and compared to a theoretical distribution, such as analysis of variance or stepwise multiple linear
regression. Here, we offer guidelines and an example of the use of the indicator approach for dealing with nonparametric
data distributions, using data from a study conducted in northern Vermont and New Hampshire.

INTRODUCTION

Recently authors have used the USDA Forest Service’s
database of Forest Inventory and Analysis (FIA) plots to
produce maps of species distributions (lverson and others
1999, Moeur and Riemann Hershey 1999, Riemann Hershey
and others 1997), pockets of high-value commercial trees
(King 2000), and forest distribution (Zhu 1994). The methods
used to produce these maps have varied from geostatistical
simulation (Riemann Hershey and others 1997, King 2000)
to advanced multivariate regression-based techniques (Zhu
1994, Moeur and Riemann Hershey 1999, lverson and
others 1999). Few of the techniques, however, have
addressed the theoretical and practical problems associated
with analyzing highly skewed distributions using parametric
statistics. For example, positively skewed data distributions
can affect semivariance calculations and kriging weights if
the extreme values are located within patches of homoge-
neous patches of low values. Similarly, traditional statistical
methods, such as multiple linear regression, determine the
significance of a given model by calculating an F statistic
and comparing it to a theoretical distribution. If the data from
which the model was built are not normally distributed,
erroneous inferences can be made.

Geostatistical techniques such as ordinary kriging and its
variants do not inherently require normally distributed data;
rather, they assume a multi-point Gaussian random function,
described thoroughly in Isaaks and Srivastava (1989),
Goovaerts (1997) and Myers (1994). The random function
model, which can actually be thought of as a conceptual
model, was formulated in part to account for the inherent
uncertainty surrounding a set of spatially referenced
observations. A random function, in effect, is a set of
random variables for each location within a given spatial
domain. A random variable is a variable whose values at
any location are determined by some probabilistic mecha-
nism. In other words, a reported estimate is drawn from a
distribution of estimates that have some probability of
occurring at the estimate’s location.

Each data point can be conceived of as a random variable
whose true value is known, and each estimate to be made is
a linear combination of random variables (the known data).

The distribution of values making up a random variable can
be described by a cumulative distribution function (CDF), or,
as with class variables, by a probability density function
(PDF). At any unknown location, a CDF constructed without
any additional information regarding the form of the random
variable would resemble that in figure 1A. In this situation,
the best estimate of a variable at an unknown location would
be the sample mean. However, in many earth science
datasets, data are spatially dependent, and this knowledge
can be used to update the CDF to one that might resemble
that in figure 1B. In this instance, one might choose different
percentiles of the CDF as an estimate to report, depending
upon the goals of the study.

For example, assume there is a set of spatially referenced
observations of the importance of species X within a study
area. The importance of this species might be dependent
upon variables such as soil chemistry, climatic factors,
topographic relationships, or the presence or absence of
other species. In general, these factors can be assumed to
vary relatively smoothly across space. It can be inferred,
thus, that areas with high levels of species X are surrounded
by other areas of high levels of species X. In other words,
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Figure 1—Example of two cumulative distribution functions defining
the random variable at an unknown location: A—when no additional
information is known about the values; B—when additional informa-
tion, such as the form of the model of spatial dependence, is known.
Points can be defined along B using indicator geostatistics.

1 Paper presented at the Second Annual Forest Inventory and Analysis (FIA) Symposium, Salt Lake City, UT, October 17-18, 2000.

2 Forester, Research Forester, and Research Forester, USDA Forest Service, Northeastern Research Station, 11 Campus Blvd., Newtown

Square, PA 19008, respectively.



the random function exhibits spatial dependence, or
autocorrelation. Autocorrelation, an index of similarity
analogous to variance, can be calculated for points sepa-
rated by distances placed in discrete distance classes. Once
the relationship between autocorrelation and separation
distance is modeled using variography, the variogram can
be used in the estimation procedure (e.g., kriging) to update
the CDF to create a conditional CDF (CCDF). Therefore, a
given location’s CDF is altered, or conditioned on the
surrounding data, using the model of spatial dependence
constructed for the random function. Under the multi-
Gaussian assumption (i.e., that the random variables
composing the random function are normally distributed),
the mean of the random variable is the simple kriging
estimate at that location, and the variance is the simple
kriging variance (Isaaks and Srivastava 1989, Goovaerts
1997, Myers 1994).

Again, it is important to note that the non-normality of a
distribution of samples does not necessarily imply a non-
multiGaussian random function. An observed set of samples
can be thought of as one realization of the random function;
i.e., the samples could theoretically have had an infinite
number of distributions. In geostatistics, the problem with
non-normal distributions is that the modeling procedure (the
variography) and the estimation procedure (the kriging) are
essentially averaging techniques, and can be affected by
small numbers of extreme values, a common phenomenon
in earth science datasets. To resolve this, sample data with
highly skewed distributions are normal score transformed
(Deutsch and Journel 1998, Goovaerts 1997). In this
procedure, the original CDF is mapped onto the standard
normal CDF, giving the transformed distribution perfect
symmetry, with a mean of zero and a standard deviation of
one. The relationship between the two distributions is
defined on a case-by-case basis so that after the estimation
procedure is carried out, back transformation can be
performed (Deutsch and Journel 1998).

The normal score transform is useful when performing
conventional statistical estimation as well. For example, with
stepwise multiple regression, variable inclusion and param-
eter estimates are determined by calculating test statistics
that are compared to a reference distribution that was
created under the assumption of normality. Large deviations
from normality can lead to undesirable outcomes such as
heteroscedasticity in regression residuals (Zar 1984), and
thus should be carefully evaluated.

INDICATOR GEOSTATISTICS

Another estimation method used when working with highly
skewed data distributions is indicator geostatistics. The goal
of this paper is to present the general theory and methodol-
ogy behind indicator kriging (IK), and to present an example
of indicator kriging with varying local means (IKLVM). Both
are nonparametric geostatistical approaches that avoid
many of the abovementioned pitfalls. In IK and IKLVM, the
CCDF is constructed by defining discrete points across the
entire range of data values (fig. 1B), and then interpolating
between these points to arrive at the completed CCDF for
each point to be estimated. IK is a univariate approach,
while IKLVM allows for the incorporation of ancillary
covariates into the estimation procedure.
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INDICATOR KRIGING

In IK, the first step in defining the CCDF values at a given
location is to determine a series of threshold values or
cutoffs from within the range of data values. In practice,
deciles of the sample data distribution are chosen because
the goal is to define the CCDF for the entire data range.
Once these thresholds have been determined, each value is
coded as a “1” or a “0”, with “1” being assigned to values
below that threshold, and “0” being assigned to values
above the threshold. Thus in the example where deciles of
the distribution are used as cutoffs, 10 datasets consisting
of 1's and 0’s will be created, one for each cutoff.

The second step in defining the CCDF values is to model
the spatial autocorrelation for each of the coded datasets
(e.g., deciles) using variography. In order to construct
smoothly varying CCDF’s, Goovaerts (1997) recommends
using the same model or combination of basic models for all
of the variograms. For example, the indicator variograms
(correlograms) for each of seven percentiles of a dataset
shown in figure 2 should be modeled using the same basic
structure.

Once these variograms have been created, IK is performed.
In IK, each estimate is actually a weighted average of the
sample data (1's and 0’s) surrounding it, with the weights
being derived from the variogram. An IK estimate can be
interpreted as the probability of an outcome of 1, or, more
specifically, the probability of the actual value at that location
being below the threshold used to code the data. This
process is repeated for each point to be estimated, and for
each threshold dataset. In effect, in keeping with the above
decile example, 10 continuous probability maps are created
with the value of each pixel being the probability of falling
below the threshold used to code the data. Thus, 10 pairs of
X,y coordinates (cutoff value, probability of being less than
that cutoff value) can be obtained for each location, and 10
points can be placed along the CCDF as in figure 1B.
Interpolating between and extrapolating beyond these
discrete points to fill in the CCDF should be undertaken with
care; guidelines are given in Goovaerts (1997) and Deutsch
and Journel (1998).
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Figure 2—Examples of indicator variograms obtained from spruce-
fir importance data from a study in northern New Hampshire and
Vermont. See Lister and others (2000) for details. All of the
variograms from different cutoff levels show some degree of spatial
dependence.



The final step of the process is to choose a percentile of the
CCDF to report as a value. Goovaerts (1997) gives a
detailed discussion of different criteria that might be em-
ployed to make this decision. In essence, the decision will
be based on some sort of an optimality criterion defined by
the goals of the study. The following section will not only
present an example of an indicator technique in practice, but
also elucidate some of the steps one might take to develop
an optimality criterion for the choice of the estimate to
report.

INDICATOR KRIGING WITH LOCALLY VARYING
MEAN—AN EXAMPLE

A study was conducted using data from 760 FIA plots in
northern New Hampshire and Vermont (for details see Lister
and others 2000). The relative importance (relative basal
areas) of a combination of red spruce (Picea rubens Sarg.)
and balsam fir (Abies balsamea L.) was determined on each
plot, and IKLVM was applied. IKLVM is in principle identical
to univariate IK, however the CCDF values are determined
by a combination of logistic regression (Montgomery and
Peck 1982) and simple kriging of the residuals of the logistic
regression. The technique is implemented in a manner
similar to that of simple kriging with varying local means,
described in Metzger (1997), Majure and others (1996), and
Hunner and others (1998). The general expression for the
logistic regression estimate is

exp(b0+ bl* x1+...+bn* xn)
1+ exp(b0+ bl* x1+...+ bn* xn)

E(y | xi..xn) =

where E(y) can be interpreted as the probability of an
outcome of “1” occurring (assuming that the data are coded
as 0 and 1), b0...bn are the coefficients and x1...xn are the
ancillary data layers.

The first step of the process was to determine the appropri-
ate thresholds as described above. The frequency histogram
of the data indicates a strong positive skewness (fig. 3), with
30 percent of the data values having O percent spruce-fir
importance. Consequently, the cutoffs chosen for indicator
coding were the 30th — 90th deciles of the original data’s
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Figure 3—Frequency histogram of the spruce-firimportance data
used in the example. The distribution exhibits a strong positive skew,
with 50 percent of the data falling in the first class.
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distribution, or values of 0, 3, 10, 17, 27, 40 and 60 percent
spruce-fir importance. Once these seven coded data sets
were constructed as described above, logistic regression
was applied to determine, for each point to be estimated,
the probability of being below or equal to one of the seven
cutoff values (an outcome of “1”).

In order to build the logistic regression model, exhaustively
sampled data layers (i.e., secondary data that were collo-
cated with FIA plots and at all points to be estimated) were
chosen based on a combination of user judgment, explor-
atory data analysis, and stepwise logistic regression. The
variables included in the final regression model were
Landsat band 4, digital elevation model (DEM) -derived
slope and the square root of elevation, and the square root
of latitude. One logistic regression model was built for each
of the seven cutoffs. All regressors contributed significantly
to the model for each cutoff at the 0.01 level, with the
majority being significant at the 0.0001 level.

The value of each pixel in the maps in figure 4 was pre-
dicted using the logistic regression model for that cutoff.
Each value represents the probability that a pixel falls below
the cutoff used to code the data. For example, the upper left
map represents the probability of a pixel’s value being lower
than or equal to the original data’s 30th percentile, which is
0 percent spruce-fir importance. The highest probabilities
(lighter pixels) of having 0 percent spruce-fir importance are
seen in areas such as valleys or in clearly nonforest areas,
where the logistic regression procedure yielded low values.
As the cutoff values increase, the amount of area which
probably falls below that cutoff’s level of spruce-fir increases
until finally, at the 90th percentile, spruce-fir forest has a
relatively high probability of occurring at importance levels of
at most 60 percent everywhere except forested ridge tops
far from roaded areas (shown as darker areas on the map).
In these areas, the forests have a high chance of having
greater than 60 percent spruce-fir importance.

The next step of the IKLVM procedure was to calculate the
regression residuals from each model by subtracting the
probabilities from the regression output from the coded data.
These residuals are then assessed for spatial dependence
using variography. In our example, the inverted correlograms
(hereafter referred to as variograms) of the residuals
indicate that spatial dependence does exist in the regression
residuals (fig. 5). None of the variograms exhibited substan-
tial anisotropy, i.e. the model of spatial continuity did not
change with direction.

The next to final step was to use simple kriging to estimate
for each map the error at every point in the study area,
based on the variograms of the logistic regression residuals
(fig. 5). These error (residual) maps were then combined
with the regression-based maps with simple addition to
arrive at updated maps of IKLVM probability estimates. It is
these updated estimates that were used to complete the
CCDF.

To reiterate, we created IKLVM maps for each of our cutoff
values. If we were to stack these maps one on top of the
other and randomly sample any pixel of the stack, we would
obtain a set of x, y coordinates that could be used to locate
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Figure 4—Logistic regression maps constructed from data coded as 1 or 0, based on whether they fall below the
indicated threshold percentage of spruce-fir importance. Light pixels have higher probabilities of falling below that
cutoff than dark pixels. The effects of topography are readily apparent in the southeast part of the study area.

discrete points on a CCDF similar to that in figure 1B. It is
important to remember that each pixel in the map has its
own CCDF. In our example, we chose to fill in the CCDF by
implementing linear interpolation between points in the
center of the distribution and hyperbolic interpolation in the
tails. This choice was made based on examination of the
resulting CCDF’s and assessment of their plausibility, as well
as on the suggestions of Deutsch and Journel (1998) and
Goovaerts (1997).
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Once we created our percentile maps and arrived at a CCDF
for each pixel, the final step in the IKLVM approach was to
choose a percentile of the distribution to report as the final
estimate. Goovaerts (1997) and Deutsch and Journel (1998)
discuss criteria that can be used to make this decision. In
general, they suggest that the user establish an “optimality
criterion”, or set of conditions that a “good” estimate must
satisfy, and then use this criterion to make the choice. Figure
6 shows scatterplots for both the model fit (A-G) and a set of
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Figure 5—Variograms of residuals from the logistic regression procedure for the indicated cutoff. All residual

variograms exhibit spatial dependence.

validation data’s fit (H-N) for a range of deciles of the CCDF
(the 20™ through the 80™) that probably encompasses the
final estimate. The dashed line passing through the cloud of
points is the 45-degree line, along which all points would fall
if the model perfectly predicted the sample points. The dark
line is a least squares best fitting line describing the relation-
ship between the actual value (x axis) and the estimate (y
axis). The closer the agreement between the least squares
best fitting line and the 45-degree line, the more accurate the
model is, on average.

It is apparent that for low percentiles, the model dramatically
underestimates (fig. 6). For larger percentiles, however, the
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situation is reversed with values being over predicted.
Intermediate values tend to be predicted the best near the
middle of the distribution. For some applications, the user
might be very concerned about correctly estimating values
close to zero, for example, when trying to accurately locate
areas with small amounts of some rare but valuable tree
species. Before investing in field reconnaissance, a user
might want to be as certain as possible that the species
occurs at a location, so he or she might choose a percentile
where the values are underestimated, for example, the 20™
or the 30" percentiles. Similarly, a user might want to find all
areas where there are large amounts of a species of
interest, in which case the user might choose a percentile
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Figure 6—Scatterplots of the model fit of estimates from the 20" to 80" deciles (A-G, respectively), and for the
70 validation data (H-M, respectively). The actual data value is on the x axis, and the predicted value is on the y
axis. The gray dashed line is the 45-degree line (perfect agreement), and the black solid line is the least squares

best fitting line through the points.
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such as the 80" or 90". The percentile of the CCDF to report
as an estimate is therefore chosen based on the relative
impact of overestimation or underestimation.

Another criterion might be avoidance of heteroscedasticity of
the residuals. The percentile values surrounding the median
(figure 6D, E, F and K, L, and M) appear to exhibit roughly
equal variance for the entire range of estimates, with the
points approximately following the 45-degree line. In our
example, we might choose the 70" percentile based on this
criterion.

Another criterion that can be applied is the ability of a given
percentile to produce estimates with a distribution that
resembles that of the original data, either for certain areas of
the distribution, or for the distribution as a whole. Figure 7
shows a histogram of estimates from each percentile
compared to that of the original data. Using this criterion, the
estimates from the 40" percentile (the “x” symbol) of the
CCDF’s most closely agree with the original data in the first
class, which encompasses the lowest importance values for
spruce fir (<0.05, or 5 percent importance) and has the
largest class occupancy.

Table 1 shows the results of a quantitative method of
comparing the estimate histograms with that of the original
data. One might seek to minimize the squared difference
between percentages of estimates in each class for the

different techniques. In addition, one might want to weight
these differences by the magnitude of class occupancy
because differences in very populous classes might be more
important than differences in less populous classes. For
example, for the first class in table 1, the value of 301.991
was arrived at by squaring the difference between the
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Figure 7—Histograms of the original data (dashed line) and the
estimates from each of seven percentiles (solid lines; see legend for
details). The 40" percentile histogram has the closest agreement with
the original data’s histogram.

Table 1—Quantitative assessment of the differences between the histograms in figure 7. For each
percentile, the weighted average squared difference between the percentile histogram and the
original data’s histogram was calculated for each class. The 40th percentile has the minimum

weighted average difference

Percent of Squared difference

Class original data 20h 30h 40t 5oh 60h 70h goh

1 50.000 301.991 176.375 2.450 33.863 170.107 398.375 692.871
2 4816 0.002 0.120 1.202 1.997 2.475 2.226 1.201
3 5,524 0.003 0.039 0.551 0.908 1.091 0.893 0.364
4 6.516 0.453 0.239 0.002 0.101 0.253 0.343 0.168
5 4816 0.210 0.101 0.020 0.191 0.488 0.713 0.641
6 2.833 0.010 0.002 0.021 0.093 0.214 0.377 0.466
7 4533 0.337 0.266 0.100 0.033 0.001 0.014 0.036
8 2.691 0.074 0.052 0.007 0.003 0.039 0.137 0.282
9 2.975 0.121 0.090 0.042 0.013 0.001 0.046 0.192
10 3.258 0.228 0.200 0.107 0.060 0.011 0.013 0.194
11 1416 0.016 0.011 0.001 0.000 0.007 0.048 0.209
12 1.841 0.047 0.042 0.023 0.008 0.001 0.008 0.103
13 0.992 0.002 0.003 0.002 0.001 0.001 <0.001 <0.001
14 1.275 0.010 0.008 0.008 0.007 0.005 0.004 0.002
15 1.133 0.007 0.007 0.006 0.005 0.003 0.003 0.002
16 2.125 0.096 0.070 0.064 0.059 0.052 0.051 0.042
17 0.992 0.010 0.010 0.003 0.003 0.003 0.002 0.001
18 0.992 0.010 0.010 0.004 0.004 0.003 0.002 0.002
19 0.283 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
20 0.992 0.010 0.010 0.005 0.001 0.031 0.159 0.589

Mean squared

difference: 15.981 9.350

0.243 1.966 9.199 22412 38.743



amount of the 20" percentile estimates in class 1 (74.6
percent) and the amount of the original data in class 1 (50
percent). This squared difference was multiplied by 0.5,
which is the proportion of the values of the original data in
class 1. Because this first class contains 50 percent of the
data, any difference observed in this class is more important
then one observed in, e.g., class 10, which contains less
than 4 percent of the data. We can thus weight each
difference by the percentage of original data in that class,
and then determine the smallest weighted average squared
difference between the actual data and the estimates in
order to choose that as the percentile to report. In our
example, the choice would be the 40" percentile.

FINAL POINTS

The indicator approach shows itself to be much less
restrictive than traditional approaches such as parametric
regression, or geostatistics under the multiGaussian
assumption. It makes no assumptions about the underlying
shape of the CCDF describing the random variable at any
location, and it also allows for the incorporation of secondary
data, as in the IKLVM procedure. The benefits of incorporat-
ing additional “soft information” into the estimation proce-
dure become readily apparent when examining the resulting
final maps from univariate IK and multivariate IKLVM (fig. 8).
The amount of detail available in the regression-based map
is dramatically higher than that found in the univariate-
derived map. This is due to the ability of the technique to
account for sharp changes in the landscape over short
distances. Univariate |IK, on the other hand, assumes that a
smooth transition occurs between levels of the primary
variable in the intervening spaces between the plots;
therefore it fails to take into account the fine-scale features.

In conclusion, the random function model allows us to
implement indicator geostatistical methods that can alleviate
concerns about non-normal data distributions. The use of
the indicator approach also allows us to define optimality
criteria for reporting a final estimate or creating a map of

an environmental variable. We have found that these
approaches, especially IKLVM, are useful tools for modeling
forestry data.

N e

Figure 8—Comparison of the final univariate IK map (A) and the
IKLVM multivariate map (B). The IKLVM map reveals much more of
the fine scale spatial heterogeneity that exists across the landscape
than does the IK map.
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