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INTRODUCTION
The USDA Forest Service’s Forest Inventory and Analysis
(FIA) uses a systematic sample of field plots to characterize
forest conditions over 300,000,000 hectares of forest and
woodland ecosystems in the USA. FIA measures 364,000
1-ha field plots, 120,500 of which are forested. Remote
sensing can improve accuracy of FIA statistical estimates.
For example, FIA interprets aerial photography for a
systematic sample of 9,400,000 plots to improve estimates
of forest area and population totals. Stratification with wall-
to-wall Landsat satellite data could replace photo-interpre-
tation within the next few years.

We specify accuracy standards for remotely sensed
classifications that will be used for stratification into two
categories: forest and nonforest. Application of our recom-
mendations requires assumptions, such as the expected
prevalence of forestlands in the population. We make
generalizations regarding the loss in efficiency caused by
change in land use since acquisition of remotely sensed
data. These generalizations help determine how old
remotely sensed images can become before new imagery
is needed for stratification. We also consider formation of a
stratum for elements that are most likely to be misclas-
sified. We make recommendations that can help determine
a priori the size of this “indeterminate” stratum.

SAMPLE SURVEY ESTIMATORS
Assume a population is subdivided into two sub-popula-
tions, such as forest and nonforest. Our goal is estimation
of the proportion P(Aj) of each sub-population Ai

 in the
population, where 0<P(Aj)<1. A simple transformation
converts this proportion into a percentage or an area (e.g.,
number of hectares). Assume every element of the sam-
pled population is composed of one and only one sub-
population category, which justifies the binomial distribu-
tion. We introduce the “error matrix” for remotely sensed

classifications and make the connection to statistical
stratification, start with the estimator, give the estimators for
simple random sampling and for stratification, and define
the “design effect” as a measure of the gain in statistical
efficiency with stratification.

Error Matrix for Remote Sensing
The “error matrix” or “confusion matrix” describes accuracy
in the remote sensing literature (e.g., Congalton 1991). Let
P(Bj) be the proportion of the population in stratum Bj, let
P(Aj∩Bj) denote the proportion of the population that is
jointly in sub-population Aj and remotely sensed stratum Bj,
and let P(Aj|Bj) denote the proportion of sub-population Aj

given that the remotely sensed stratum is Bj, where
P(Aj|Bj)=P(Aj∩Bj)/P(Bj). Figure 1 gives the mathematical
notation that we use for the error matrix. We assume
remotely sensed classifications are used to define each
stratum, and remote sensing measures the size, or area,
of each stratum, i.e., P(Bj).

The ideal stratification occurs when each sub-population
occurs in one and only one stratum (Cochran 1977).
However, remote sensing does not have 100 percent
accuracy, and each remotely sensed stratum usually
contains both sub-populations. For example, let stratum B1

be classified as forest with wall-to-wall Landsat data;
however, not all sites that are truly forested will be included
in this stratum.

The sample of field plots is used to estimate the distribu-
tion P(Aj|Bj) of each sub-population Aj within each remotely
sensed stratum Bj. Remote sensing improves statistical
estimates of each sub-population P(Aj) by introducing
ancillary data, namely precise measurement of the size
P(Bj) for each stratum.
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Simple Random Sampling
Assuming simple random sampling, Cochran (1977) gives the estimated proportion of sub-population A

j
 and its variance as:

Stratification
Consider a simple random sample of field plots, each of which is classified into one and only one sub-population. Remotely
sensed classifications place each field plot into one and only one stratum, and remote sensing measures the area of each
stratum. Cochran (1977) gives the estimated proportion of sub-population A

i
 in the total population, and its variance:
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1b. Conditional probabilities (accuracy) within strata 
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Figure 1—The "error matrix", or "confusion matrix", describes classification accuracy with
remotely sensed data. The goal is estimation of the prevalence or size of each sub-population,
i.e., P(Aj). Post-stratification uses the distribution of sub-population proportions in each stratum,
i.e., P(Aj|Bj), and the size of each stratum, i.e., P(Bj), to improve statistical estimates of P(Aj) .
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where

Equation (2) is sufficient to compute approximations for the variance of a post-stratified estimate. However, the expected
variance is often needed for survey planning when the stratum sizes P(B

j
) and conditional probabilities P(A

i
|B

j
) are not yet

observed. In the following sections, we make realistic assumptions and simplifications that make it easier to anticipate gains
from stratification and specify accuracy standards for remote sensing.

Design Effect
The improvement in statistical efficiency with stratification of a simple random or systematic sample is quantified by the ratio
of variances, which is designated the “design effect” by Särndal and others (1992). We denote the design effect as k, and it is
approximated with equations (1) and (2) as:

If stratification improves the estimate, then k must be less than 1. Since all variances are positive, k>0. In the following
sections, we use the design effect to simplify the mathematics and draw broad generalizations.

For two strata (m = 2), the design effect k in equation (3) simplifies to:
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Now, we express equation (4) in a form that is more useful in deriving the generalizations that follow. First, we use figure 1 to
define two useful equalities:

Equation (4) can be expressed using the equalities in equation (5) as:

Since P(B1)+ P(B2)=1, equation (6) may be rewritten as:
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Rearranging equation (8):

Note that the final expression in equation (9) is the product of two terms, each of which is independent of each other and the
sizes of the strata P(B

i
). This feature greatly simplifies subsequent algebra.

SYMMETRICAL 2x2 ERROR MATRIX
We now derive expressions for the size of the two strata given the sizes for both sub-populations P(A

i
). We assume the

relative accuracy is identical in both strata (see below). Under this assumption, we show that both margins of the 2x2 error
matrix in figure 1a are identical, i.e., P(A

i
)= P(B

i
), and the off-diagonal joint probabilities are identical, i.e., P(A

1
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2
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).

The symmetry under these conditions facilitates derivations in other sections.

Relative Accuracy
Using equation (9), define “relative accuracy” as follows:

If the relative accuracies are identical in both strata, then the following proceed from equation (9):

Symmetric Margins
From figure 1b and equation (11), the off-diagonal conditional probabilities are:
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Solving equation (13) for P(B1), we show that both margins of the 2x2 error matrix in figure 1a are identical, i.e., P(Ai)= P(Bi):

Symmetric Off-Diagonals
Finally, we show that both off-diagonal joint probabilities in the 2x2 error matrix (fig. 1a) are identical when the relative accura-
cies in both strata are identical:

Symmetric Matrix of Joint Probabilities
Assuming the relative accuracies are identical in both strata, as in equations (11) to (15), the matrix of joint probabilities from
figure 1a is symmetric, as given in figure 2.

ACCURACY STANDARDS
Classification accuracy P(Ai|Bi) in stratum Bi

 must be greater than the proportion of sub-population P(Ai) in the population, i.e.,
P(Ai|Bi)>P(Ai); otherwise, the design effect k will be greater than one in equation (9). For example, a 10,000-km2 geographic
area truly contains 7,000-km2 of forest cover. Stratification will improve precision if, and only if, the remotely sensed forest
category has at least 70 percent accuracy [i.e., 0.7<P(A1|B1)<1.0], and the remotely sensed nonforest category has at least 30
percent accuracy  [i.e., 0.3<P(A2|B2)<1.0]. However, accuracy must be far greater before the gain in precision is substantial, as
we now discuss.

Examples of desired accuracy of remotely sensed classifications are given for five different levels of design effect k in table 1.
For example, a “substantial” gain in table 1 is defined as a design effect of k=0.5, meaning:
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Figure 3—Relative confidence intervals for different levels of
design effect k in table 1.

Figure 2—Error matrix for two sub-populations and corresponding strata when the relative
accuracy in each stratum is identical (equations (11) to (15)). These assumptions permit
generalizations, while maintaining realistic scenarios.

• The estimate with stratification has half the variance of the
estimate with simple random sampling;

• Estimates from simple random sampling would require a
two-fold increase in the number of field plots to achieve
the same variance with stratification; and

• The confidence interval with stratification is approximately
71 percent (                      ) smaller than that with simple
random sampling.

Figure 3 illustrates the relative precision of stratified
estimates for each level of design effect in table 1. The
discrete levels in table 1 simplify mathematical generaliza-
tions that follow.

Assume that the relative accuracies are identical in both
strata, as in equation (11). Figure 4 displays the classifica-
tion accuracy P(A

i
|B

i
) in stratum B

i
 required to meet various

levels of gain in statistical efficiency (k in table 1). From
figure 4, classification accuracy in a stratum must be nearly
perfect if its corresponding sub-population is very prevalent,
i.e., P(A

i
)»1.0, while the accuracy need not be nearly as

great for a rare sub-population, i.e., P(A
i
)≈0. Czaplewski

and Patterson (in preparation) show that figure 4 is
applicable classification systems having three or more
sub-populations under certain assumptions.
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Table 1—Levels of gain from stratification used in comparisons 
 

 
 
 
 

Design effect 
k=VSTR/VSRS 

 

 
 
 

Gain in efficiency 
through post-
stratification 

 
 

Increase in effective 
number of plotsa 
gained through 

stratification 

 
 

Relative variance of 
stratified sampling 

compared to simple random 
sampling 100×VSTR/VSRS 

 

Relative standard errorb  
of stratified sampling 
compared to simple 

random sampling 100× 

STR SRSV /V  
 

   - - - - - - - - - - - -Percent- - - - - - - - - - - - 

k=(1/1.0)=1.00        “None”            None 100  100 

k=(1/1.2)=0.83        “Minimal”            1.2-fold   83    91 

k=(1/1.5)=0.67        “Moderate”            1.5-fold    67     82 

k=(1/2.0)=0.50        “Substantial”            2-fold    50    71 

k=(1/4.0)=0.25        “Excellent”            4-fold    25    50 
 

a The increase in sample size n that would be required to achieve the same variance without stratification. 
b Approximately proportional to the confidence interval. 

0.5 100%×
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LOSS OF EFFICIENCY OVER TIME
Landscapes change over time through land management,
succession, disturbance and shifting land use. Current
field plots may be stratified using remotely sensed data
that were acquired many years ago. Some portion of the
total “classification error” is caused by changes in the
landscape, not by the original accuracy of the remotely
sensed classifications. How old can the remotely sensed
data become before its value for stratification becomes
seriously degraded?

Assume the size of sub-population A
1
 at time t decreases

by some fraction D of its original size at time 0, where
0<D<1. Since the remotely sensed data were acquired at
time t=0, the stratum sizes P(B

i
) are the same at times 0

and t. Assume changes in the landscape between times 0
and t are independent of the remotely sensed classification
at time 0. The decrease in the size of sub-population A1

causes a corresponding increase in sub-population A2.
Finally, assume both strata at time 0 have the same relative
accuracy. The error matrix in figure 5, which corresponds to
figure 2, captures these assumptions. Under these
conditions, the design effect kt at time t equals:

Equation (16) can be transformed into a more general
expression that simultaneously covers all levels of the
design effect k0:

Figure 6 is a graphical display of equation (17). When there
has been little change in the landscape between time 0
and t (∆≈0), there is little change in design effect (kt≈k0)
using remotely sensed data acquired at time 0, and there
is little loss in statistical efficiency. However, as the net
decrease in sub-population size (∆) becomes larger, the
design effect approaches one. This means that the
variance with stratification is nearly equal to that under
simple random sampling, i.e., the gain in efficiency through
stratification is almost entirely lost.

When a sub-population is very common, i.e., P(Ai)≈1, even
a small decrease in sub-population size between time 0
and t causes major losses in efficiency. However, if the
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Figure 4—Classification accuracy P(Ai|Bi) in stratum Bi required for
different levels of statistical gain (k in table 1) as a function of sub-
population size P(Ai). These results assume that the relative
accuracy is identical for all strata as in equation (11).
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Figure 5—Error matrix that includes change (D at time t) in sub-population A1 after acquisition of the
remotely sensed data (time t=0) that are used to specify strata B1 and B2.
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Figure 6—Design effect as function of loss rate for one of the sub-
populations. As the rate becomes faster, the design effect
approaches 1, meaning that the variance with stratification is no
better than the variance with simple random sampling.
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sub-population represents less than 80 percent of the total
population at time 0, and the net decrease at time t is less
than 5 percent (∆=0.05), then the decrease in efficiency is
less than 25 percent (fig. 6). Most extensive landscapes
have less than 80 percent forest.

As example, let sub-population A
1
 represent forest land-

use, and the stratification is based on ten-year old remotely
sensed data. Assume 1 percent per year of the original
forest land-use is converted to another land use, such as
agriculture or urban. The rate of change over 10 years is
∆≈0.10. Assume there are no conversions back to forest
land-use. If forest land-uses occupy less than 60 percent of
the landscape, then the stratification based on ten-year old
remotely sensed data retains 75 percent of its efficiency
(fig. 6). Loss of statistical efficiency is most rapid in those
landscapes dominated by forest land-uses.

Czaplewski and Patterson (in preparation) extend this
model to cases in which changes occur in both sub-
populations. They analyze steady state conditions, in which
the changes in sub-population A

1
 exactly equal the

changes in sub-population A
2
. They find that statistical

efficiency also decreases over time, and the rate of loss in
efficiency can be higher in a dynamic stead-state land-
scape than a landscape that is not at equilibrium.

INDETERMINATE STRATUM
Some population elements (e.g., pixels) are classified with
less confidence than other elements with remotely sensed
data. For example, the maximum likelihood classifier,
which is widely used for image processing, computes the
probabilities of a pixel being a member of each remotely
sensed category. The pixel is assigned to the category with
the highest probability, even if the largest probability is rela-
tively low for some pixels. This often occurs with mixed
pixels, or pixels near the boundary of a multivariate cluster.
As another example, a binary-tree classifier assigns each
element into a single category, but the algorithm estimates
the probability of correct classification using its training
data. Even with unsupervised classifiers, all multivariate
clusters do not have the same proportion of predominate
labeling sites. We investigate the opportunity to increase
statistical efficiency by creating a new stratum that contains
pixels which are classified with less confidence than other
pixels. We label this stratum as the “indeterminate
stratum.”

The matrix in figure 7 gives one example that is numerically
tractable. Let dij represent the quantity of elements that
are removed from sub-population i in stratum j. We start by

moving a small quantity of elements into the indeterminate
stratum and increase the quantity until the gain in statistical
efficiency is maximized. The first elements removed are
those that are most difficult to successfully classify.

The size of each d
ij
 is modeled by functions f

i,j
(c

i
), where c

i
starts at 0 and incrementally increases towards 1 until the
optimum is realized (fig. 8). These functions have the
following conditions:

1.  For the matrix in figure 7, d
ij
=f

i,j
(c

i
) for 0<c

i
<1 in stratum

B
i
. If the sub-population is correctly classified in stratum

B
i
, f

i,i
(c

i
) is a linear function of (c

i
). If the sub-population

is not correctly classified in stratum B
i
, f

j,i
(c

i
) is a non-

linear function of (c
i
) so that we can impose Conditions

3 and 4 that follow. Figure 8 illustrates these two
functions.

2.  The number of elements correctly classified in a stratum
must always be larger than the number of elements that
are incorrectly classified, i.e., P(A

i
|B

i
)>0.5. For large

values of the design effect k (meaning that the original
stratification yields little gain in efficiency over simple
random sampling), and a when stratum is very rare, this
condition is not always met. Therefore, the following
constraint is placed on P(Ai) in equation (18).

3.  Some classification errors are not removed until virtually
all elements in the stratum are shifted into the indeter-
minate stratum (fig. 8). The last elements to be removed
from the stratum (c≈1) have almost no classification
error. The value of a in equation (18) is numerically
determined so that the following condition is true for
fj,i(ci), i.e., when the sub-population is not correctly
classified in stratum Bi.

4.  The highest proportion of classification errors are
removed from each stratum during the first incremental
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shifts of elements into the indeterminate stratum, where
c

i
≈0. We assume a 50:50 mixture of the two sub-

populations among these first elements. This repre-
sents those elements that are most difficult to correctly
classify. This constraint is imposed by making the first
derivatives of f

i,i
(c

i
) and f

j,i
(c

i
) identical when c

i
=0 (fig. 8).

5.  As elements are moved into the indeterminate stratum,
accuracies increase in both of the original strata. We
force their relative accuracies to remain equal so that c2

can be expressed as a function of c1. This reduces the
number of variables in our evaluation. However, we
make an exception to this constraint when c1=1,
meaning all of stratum B1 is moved into the
indeterminate stratum.

6.  The shift of elements into the indeterminate stratum
stops when the design effect in equation (4) reaches its
minimum within the interval 0<ci<1, i.e., the optimum
improvement in statistical efficiency.

7.  We relax Condition 5 (above) when c1=1, meaning the
optimum in Condition 6 is not realized as c

1
 reaches 1.

This situation approximately occurs whenever
P(Ai)<1.15k-0.67 in our model from figure 7 and
equation (18). In this situation, we merge stratum B1

with the indeterminate stratum. This returns us to two
strata, where the merged stratum contains stratum B

1

plus elements removed from stratum B
2
. We use c

2
 to

increase the quantity of elements shifted from stratum
B

2
 into this new stratum until we achieve the optimum in

Condition 6.

We were unable to find an algebraic solution to this
formulation; therefore, we developed a numerical solution.
The following describe our results.

We found that statistical efficiency does increase with
addition of an indeterminate stratum, at least using the
model in figure 7 and equation (18). Let k

opt
 represent the

design optimal effect with addition of the indeterminate
stratum. Figure 9 shows the proportional improvement in
the design effect (k

opt
/k) relative to the initial prevalence of

stratum B
1 
for different initial design effects (table 1). The

optimal gain in efficiency exceeds 15 percent (k
opt

/k<1-0.15)
when classification accuracy is high, i.e., the initial design
effect is excellent; however, the gain is less than 5 percent
when the initial design effect is marginal.

Given the model in figure 7 and equation (18), optimal size
of the indeterminate stratum varies with prevalence of the
two strata, as shown in figure 10. The optimal size is under
10 percent of the population when the design effect is
excellent (classification accuracy is high), but it can
approach 30 percent when the design effect is marginal
(fig. 10). The optimal proportion of the indeterminate
stratum that originates from each of the original strata in
figure 7 is given in equation (19) and illustrated in figure 11:

Figure 8—Functions fi,j(ci) for the size of each dij, which is used to
shift likely classification errors into the “indeterminate” stratum. See
figure 7 and equation (18).
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Figure 9—Proportional improvement in the design effect (kopt/k)
with addition of an indeterminate stratum for different initial design
effects (table 1). The dashed lines indicate when stratum B1 is
merged with the indeterminate stratum to optimize efficiency
(Condition 7).
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Figure 11—Proportion of indeterminate stratum originally part of
stratum B1, which corresponds to equation (19).

Let P(A
1
|B

1
)OPT represent the optimal classification

accuracy in stratum B
1
 after formation of the indeterminate

stratum. Figure 12 shows P(A
1
|B

1
)OPT as a function of

the original accuracy in stratum B
1
, i.e., P(A

1
|B

1
). We found

that this relationship is approximately P(A
1
|B

1
)OPT≈[0.75

P(A
1
|B

1
)+0.25] in our model (figure 7 and equation 18),

regardless of the initial design effect.

If accuracy is marginal and the stratum size is small
(i.e., P(B

i
)<1.15k-0.67), then the indeterminate stratum

should be merged with the rare stratum to increase
efficiency. This situation corresponds to the dashed lines in
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Figure 12—Optimal classification accuracy in stratum B1 after
formation of the indeterminate stratum, which contains elements
that are most likely to have classification errors.
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Figure 10—The optimal size of the indeterminate stratum,
expressed as a proportion of the total population. Dashed lines
indicate when stratum B1 is merged with the indeterminate stratum
to optimize efficiency (Condition 7).

figure 9. However, gains do not exceed 5 percent with the
model in figure 7 and equation 18. When the gain in
efficiency is optimal, the indeterminate stratum contains
100 percent (ci=1) of the rare stratum, plus approximately
25 percent  (cj≈ 0.25) of the common stratum. The latter
portion contains the most likely classification errors in
stratum Bj.

We recommend that the size of the indeterminate stratum
be specified before exploring the sample data after they are
collected; this avoids "over-fitting" to a given sample. Over-
fitting can bias the estimated sampling error, thus produc-
ing a variance estimate that is smaller than its true value. In
other words, our estimate would not be as precise as we
assume, and analyses of these estimates can produce
false conclusions. Figures 9 and 10, and equation 19,
provide a priori specifications that can help practitioners
follow our recommendation.
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