United States Department of Agriculture

Forest Service

Southern Research Station

General Technical Report SRS-24

Proceedings

12th Central Hardwood Forest Conference

Lexington, Kentucky February 28, March 1-2, 1999

DISCLAIMER

The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.

PESTICIDE PRECAUTIONARY STATEMENT

This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all herbicides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and their containers.

January 1999

Southern Research Station P.O. Box 2680 Asheville, NC 28802

12th Central Hardwood Forest Conference

Proceedings of a Meeting
Held at
Lexington, Kentucky
February 28, March 1-2, 1999

Edited by

Jeffrey W. Stringer and David L. Loftis

Assistant Editors

Michael Lacki Thomas Barnes Robert Muller

Sponsored by:

University of Kentucky, Department of Forestry USDA Forest Service, Southern Research Station

FOREWORD

The Central Hardwood Forest stretches from the upper Southeast to the Great Lakes and from Arkansas to Massachusetts. It is an oak-dominated deciduous forest occurring in hilly to mountainous areas of this vast region. As such, it is the most extensive temperate deciduous forest in the world. The tree species present are well adapted to the seasonal climate changes and the moderate rainfall found in the region. The Central Hardwood Forest developed since the last ice age as forests reinvaded the region. Land-use practices impacting the region include those imposed by Native Americans as well as significant impacts from European settlers. These impacts include burning, grazing, land clearing, logging, fire control, wildlife management, and pest introductions. These practices and impacts have influenced, to a large degree, the composition and the area covered by these forests.

One-fourth of the population of the United States lives in this region and approximately 90 percent of the Central Hardwood Forest is owned by private interests comprised primarily of nonindustrial forest owners. The Central Hardwood Forest is biologically and spatially complex. The body of knowledge developed by scientists and practitioners on the biology and management of this forest is critical to the continued health and sustainability of this forest. The Conference provides a significant opportunity for scientists and practitioners to exchange information that will ultimately play an important part in the development of the Central Hardwood Forest.

History of the Central Hardwood Forest Conference

This Conference is the 12th in a series of biennial meetings that have been hosted by numerous universities and USDA Forest Service Experiment Stations in the Central Hardwood Forest Region including:

- 1976 Southern Illinois University
- 1978 Purdue University
- 1980 University of Missouri
- 1982 University of Kentucky
- 1985 University of Illinois
- 1987 University of Tennessee
- 1989 Southern Illinois University and the North Central Forest Experiment Station
- 1991 Pennsylvania State University and the Northeastern Forest Experiment Station
- 1993 Purdue University and the North Central Forest Experiment Station
- 1995 Northeastern Forest Experiment Station and West Virginia University
- 1997 University of Missouri and the North Central Forest Experiment Station
- 1999 University of Kentucky and the Southern Research Station

Conference Purpose

The purpose of this Conference has remained the same since its inception "To provide a forum for the exchange of information concerning the biology and management of central hardwoods by forest scientists from throughout the Central Hardwood Region of the Eastern United States." As with previous conferences in this series, a wide range of subjects have been presented representing the range of research efforts underway in the region.

Central Hardwood Forest Conference—An Outlet for Peer-Reviewed Information

Since its beginning, the Central Hardwood Forest Conference has been an outlet for results of research focused on the forest itself or species that occur in the Central Hardwood Region. There were 32 oral presentations, 11 abstracts, and 22 poster presentations accepted for the 12th Conference. Poster and oral presentation abstracts were accepted for publication along with full-length manuscripts. Manuscripts have undergone a peer review process by two to three anonymous reviewers. Reviewed manuscripts were returned to authors and revised electronic manuscripts were submitted for publication to the USDA Forest Service, Southern Research Station. In total, 7 percent of the manuscripts were rejected, 36 percent required major revision, 45 percent required minor revision, and 12 percent were accepted without revision. Papers were edited to a uniform format and type style; however, authors are responsible for the accuracy and content of their papers.

Table of Contents

	Page		Page
COMBINED SESSION		Growth of White and Red Oak Seedlings and	
		Seed on Mined Ungraded Cast Overburden	84
Changes in National Forest Timber Sales		W.C. Ashby	
in the Central Hardwood Region	3		
W.G. Luppold and J.E. Baumgras		Long-Term Effects of Wastewater Irrigation on	
		Forested Ecosystems at Pennsylvania State	
Oak Planting Success Varies Among		Game Lands 176	90
Ecoregions in the Central Hardwood Region	9	D.S. Larrick and T.W. Bowersox	
D.R. Weigel			
		Survivorship and Growth of Natural Northern	
Effects of Frost on Hardwood Regeneration in		Red Oak (Quercus Rubra L.) Seedlings in	
Northern Wisconsin	17	Response to Selected Treatments on an	
J.C. Zasada, R.M. Teclaw, D.S. Buckley and		Extremely Acidic Forest Soil	98
J.G. Isebrands		M.C. Demchik and W.E. Sharpe	
Red Manle Dynamics in Annaloshian		Jananasa and Ciant Knatusasi Caad	
Red Maple Dynamics in Appalachian	O.F.	Japanese and Giant Knotweed Seed	102
Hardwood Stands in West Virginia	25	Reproductive Ecology	103
B.D. Tift and M.A. Fajvan		A.T. Niewinski, T.W. Bowersox and	
		L.H. McCormick	
NUTRIENT DYNAMICS			
NOTRIENT DITIAMISO		HARVESTING	
Effects of Harvesting on Soil Nitrogen (N)		11/11/12/20111/0	
Dynamics in a N-Saturated Hardwood Forest	29	Soil Disturbance and Productivity from Wide-Tired	
F.S. Gilliam and M.B. Adams		Skidder Trials in Minnesota Aspen Harvests	115
		M.F. Smidt and C.R. Blinn	
N Dynamics Across a Chronosequence of			
Upland Oak-Hickory Forests	37	Impacts of Harvest Intensity and Soil Disturbance on	
T.W. Idol, P.E. Pope and F. Ponder, Jr.		Early Tree Growth and Earthworm Populations in a	
		Missouri Ozark Forest	121
Soil Nutrient and Microbial Response to		F. Ponder, Jr., D.E. Alley, D. Jordan,	
Prescribed Fire in an Oak-Pine Ecosystem in		M.E. Swartz and V.C. Hubbard	
Eastern Kentucky	39		
B.A. Blankenship and M.A. Arthur		Contrasting Timber Harvesting Operations	
		Illustrate the Value of BMPs	128
		J.N. Kochenderfer and J.W. Hornbeck	
STAND STRUCTURE			
		Harvesting Strategies for Increasing the	
Comparison of Ecological Characteristics of		Availability and Quality of Hardwood Fiber	137
Three Remnant Old-Growth Woodlots in		C.B. LeDoux	
Belmont County, Ohio	51		
R.R. Hicks, Jr. and J. Holt			
OL		MODELING / INVENTORY	
Characterization of Coarse Woody Debris		Heiner Dunemie Dressensies to Fundam	
Across a 100 Year Chronosequence of	00	Using Dynamic Programming to Explore	4.40
Upland Oak-Hickory Forests	60	Hardwood Silvicultural Regimes	143
T.W. Idol, P.E. Pope, R.A. Figler		M.H. Pelkki	
and F. Ponder, Jr.		Use of GPS and GIS in Hardwood Forest	
		Inventory	150
REFORESTATION / RECLAMATION		C.J. Liu	
NEI SKEGIATION / KEGEAMATION			
Renewing a Forest Ecosystem Irrigated with		Use Java and the Internet to Manage Data and	. –
Treated Wastewater	71	Predict the Future of Forest Stands	151
L.M. Ahlswede, T.W. Bowersox and D.R. Jacobs	, ,	J.J. Colbert and G. Racin	
Z / Illiamodo, T.VI. Dowoloox and D.N. Jacobs		Estimating Previous Diameter for Ingrowth Trees on	
Native High Value Tree Reclamation on		Remeasured Horizontal Point Samples	152
Surface Mined Spoils in Eastern Kentucky	79	S.L. King and S.L. Arner	. 52
WR Thomas MH Pelkki and IM Ringe		- · · · · · · · · · · · · · · · · · · ·	

	Page		Page
MODELING / INVENTORY (continued)	3	DISTURBANCE EFFECTS	J
Neural Networks vs. Multiple Linear Regression for Estimating Previous Diameter	159	Individual Tree Five-Year Basal Area and Crown Diameter Growth in Appalachian Hardwood Stands as Influenced by Thinning and Gypsy Moth Defoliation	233
WILDLIFE		Individual Tree Mortality Prediction Functions from Gypsy Moth Defoliation as well as Tree, Stand, and	
Autumn Roosting Habitat of Male Indiana Bats (<i>Myotis Sodalis</i>) in a Managed Forest Setting in Kentucky	169	Site Variables	234
J.R. MacGregor, J.D. Kiser, M.W. Gumbert and T.O. Reed		Characteristics of the Chestnut Blight Fungus Isolated from Scarlet Oak in Pennsylvania	235
Foraging Behavior and Habitat Use of Red Bats in Mixed Mesophytic Forests of the Cumberland Plateau,		The Effects of Soil Manganese on Japanese Larch	
Kentucky	171	(Larix Leptolepis Sieb. and Zucc.) Seedlings in the Greenhouse	240
White-Tailed Deer Impact on Forest Regeneration:	470	C.J. Scriwerizer, W.E. Sharpe and P.J. Edwards	
Modeling Landscape-Level Deer Activity Patterns L.S. Gribko, M.E. Hohn and W.M. Ford	178	Northern Red Oak Growth Response to Climate and Industrial Air Pollution in Western Pennsylvania	245
SILVICULTURE			
Development of Oak Regeneration Nine Years		GENETICS / TREE IMPROVEMENT	
After Shelterwood Cutting and Clearcutting on the Coastal Plain of West Tennessee	189	Survival and Growth of a <i>Quercus Rubra</i> Regeneration Cohort During Five Years Following Masting K.C. Steiner and B.J. Joyce	255
Releasing Sheltered Northern Red Oak	405	N.O. Stemer and B.J. Joyce	
During the Early Stem Exclusion Stage	195	Characteristics of Northern Red Oak Seedlings Grown by Family in a Tennessee Nursery	258
Underplanted Northern Red Oak 17 Years After Thinning and Understory Control and 8 Years		·	
Following Overstory Removal	202	Field Performance of In Vitro Propagated White Ash Microplants	259
Influence of Cutting Methods on 12-Year-Old			
Hardwood Regeneration in Connecticut	204	POSTERS	
Methods to Improve Establishment and Growth of Bottomland Hardwood Artificial Regeneration	209	Soil Sampling on Surface Mined Spoils: Systematic vs. Systematic-Composite vs. Random W.R. Thomas, M. Pelkki and J. Ringe	263
Thinning Effects on Basal Area Growth of Red Maple (<i>Acer Rubrum</i> L.)	215	Quaking Aspen Emergence and Initial Survival Under Different Relative Humidity, Moisture, and Seed Placement Treatments	265
Residual Stand Quality Following Implementation of Uneven-Aged Silviculture in Even-Aged Oak-Hickory Forests in the Boston Mountains of Arkansas	221	Strategies for Improving Establishment and Productivity of Hardwoods Planted on Marginal Agricultural Lands in Southern Illinois	266
Predicting Sapling Growth and Recruitment in Different Size Canopy Gaps	228		

F	Page		Page
POSTERS (continued)		The Effect of Using Control Bags on Litterbag Measurements of Leaf Litter Decomposition and Nutrient Dynamics	-
Modeling Landscape Change in the Missouri Ozarks in Response to Alternative Management Practices S.R. Shifley, F.R. Thompson III, W.D. Dijak and	267	K.A. Holzbaur, P.E. Pope, T.W. Idol and F. Ponder, Jr.	201
D.R. Larsen A Forestland Allocation Model for Urbanizing Landscapes	269	Understory Fire Effects on Pin Cherry (<i>Prunus Pensylvanica</i> L. f.) Seed Germination	282
Managing Forests for Gypsy Moth (<i>Lymantria Dispar</i> L.) Using Silviculture: Testing the Effectiveness of)	Using Prescribed Burning to Release Oak Seedlings from Shrub Competition in Southern Connecticut J.S. Ward and E. Gluck	283
Silvicultural Treatments in Reducing Defoliation and Mortality	270	Construction Methods for a County-Wide Land Use/Cover Map C.J. Liu	284
A Stand Density Management Diagram for Norway Spruce Plantations in Central New York	271	Comparison of NE-TWIGS and ZELIG on Actual Growth of Two Sites in Kentucky	285
Forcing Environment Affects Epicormic Sprout Production from Branch Segments for Vegetative Propagation of Adult Hardwoods	272	The Impact of Prescribed Fire on Herbivory Levels of Understory White Oak	286
Long-Term Changes in Tree Composition in a Mesic Old-Growth Upland Forest in Southern Illinois	274	Nursery Treatments Alter Root Morphology of 1+0 Northern Red Oak Seedlings	288
Assessment of Residual Stand Damage and Tree Decay in Partial Harvests	276	Effects of Leaf Litter Depth on Acorn Germination J.W. Stringer and L. Taylor Development of Advanced Oak Regeneration from	289
The Effects of Thinning Intensity on Snag and Cavity Tree Abundance in an Appalachian Hardwood Stand A. Graves and M.A. Fajvan	277	Two-Age Reserve Trees	291
A Comparison of FVS/Suppose Computed Volume with USDA Forest Service Cruise Volume on the Monongahela National Forest			