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Chapter 6.  
Modeling Ozone  
Bioindicator Injury  
with Microscale  
and Landscape- 
Scale Explanatory  
Variables: A Logistic  
Regression Approach
JoHn W. CouLston

Introduction

Tropospheric ozone occurs at phytotoxic levels 
in the United States (Lefohn and Pinkerton 
1988). Several plant species, including 

commercially important timber species, are 
sensitive to elevated ozone levels. Exposure to 
elevated ozone can cause growth reduction and 
foliar injury and make trees more susceptible 
to secondary stressors such as insects and 
pathogens (Chappelka and Samuelson 1998).  
In response to this threat, the Forest Service, 
U.S. Department of Agriculture, maintains a 
national ozone biomonitoring program.

The goal of ozone biomonitoring is to 
identify geographic areas where the risk of 
ozone injury is high and the forest community 
is sensitive. These areas may then become 
candidate areas for followup investigation 
through the evaluation monitoring tier of the 
National Forest Health Monitoring (FHM) 
Program of the Forest Service (see the definition 
of evaluation monitoring in chapter 1). 
Information about plant injury from ozone is 
collected at biomonitoring plots by examining 
bioindicator species. In general, biomonitoring 
plots are located in relatively open areas within 
or near to forests, and biomonitoring species 
are both tree and nontree species (table 6.1). To 
achieve the goal of the biomonitoring program 
(to identify geographic areas with sensitive 
forest communities and high risk of ozone 
injury), spatial models, e.g., kriging, are used to 
predict the likelihood of ozone injury (based on 

biomonitoring data) at plot locations from the 
Forest Inventory and Analysis (FIA) Program of 
the Forest Service. The plot data are then used to 
identify the sensitivity of the forest community. 
Smith and others (2007) provide guidance on 
how to select an appropriate spatial interpolation 
model, but they also note that future research 
will attempt to improve the precision of the 
estimates from the spatial models. The objective 
of this chapter is to identify appropriate ancillary 
data and the appropriate spatial scale of those 
data for use in spatial modeling of risk of  
ozone injury.

Ozone injury to plants is a function of the 
sensitivity of the plant species, the ambient 
ozone concentration, and environmental 
conditions (McCool 1998). Here, we examine 
the importance of microscale variables recorded 
on the biomonitoring plots and landscape-scale 
variables available as Geographic Information 
System maps for predicting the likelihood of 
ozone injury to biomonitoring plants. The 
microscale variables examined are aspect, 
terrain position, soil depth, soil wetness, and 
soil drainage. The landscape-scale variables are 
SUM06 ozone, Palmer Drought Severity Index 
(PDSI), aspect, available water capacity, terrain 
relative moisture index, and population density 
(a more complete description of each variable is 
presented in the following section) (table 6.2). A 
logistic regression model is used to identify the 
significant variables for predicting the likelihood 
of ozone injury on biomonitoring plots.
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Table 6.1—Common and scientific names of  
bioindicator species

Common name Scientific name

Blackberry Rubus allegheniensis 
Black cherry Prunus serotina
Common and tall milkweed Asclepias spp.
Yellow poplar Liriodendron tulipifera
White ash Fraxinus americana
Sassafras Sassafras albidum
Spreading dogbane Apocynum androsaemifolium
Big leaf aster Aster macrophylum
Sweetgum Liquidambar styraciflua
Pin cherry Prunus pensylvanica
Ponderosa pine Pinus ponderosa
Jeffrey pine Pinus jeffreyi
Blue elderberry Sambucus cerulea
Quaking aspen Populus tremuloides
Scouler’s willow Salix scouleriana
Red alder Alnus rubra
Skunk bush Rhus trilobata
Ninebark Physocarpus malvaceus
Mountain snowberry Symphoricarpos oreaphilus
Western wormwood Artemesia ludoviciana
Red elderberry Sambucus racemosa
Huckleberry Vaccinium membranaceum
Evening primrose Oenothera elata
Mugwort Artemesia douglasiana
California black oak Quercus kellogii
Pacific ninebark Physiocarpus capitatus
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Data

The data used for model development were 
acquired from several sources. The FIA program 
collects information on bioindicator plant 
injury at biomonitoring sites (fig. 6.1). At each 
ozone biomonitoring plot, the amount and 
severity of ozone injury on bioindicator species 
was collected. Bioindicator species include 
ozone-sensitive species such as black cherry 
(Prunus serotina) in the Eastern United States 
and Scouler’s willow (Salix scouleriana) in the 
Western United States (table 6.1). We used the 
biomonitoring plot data as the binary response 
variable in our model (0 = no injury detected,  
1 = injury detected) for each year 2003 through 
2005. We also used microscale variables collected 
on biomonitoring sites during the 2003 through 
2005 field seasons. Landscape-scale variables 
were obtained from the U.S. Environmental 
Protection Agency, U.S. Geological Survey, and 
other sources (table 6.2). 



Table 6.2—Potential explanatory variables used in logistic regression

Explanatory variable Type Categories Variable name Spatial scale Reference

Microscale
 Aspect Continuous AspPa Plot level U.S. Department of Agriculture

 Forest Service 2002b

 Terrain position Categorical TerrPos Plot level U.S. Department of Agriculture
 Forest Service 2002b

1 Ridgetop or upperslope
2 Bench or level area along 

slope
3 Lower slope
4 Flat and unrelated to slope
5 Bottomland with occasional

 flooding
 Soil depth Binary SoilDpt Plot level U.S. Department of Agriculture

 Forest Service 2002b

1 Bedrock is not exposed U.S. Department of Agriculture
 Forest Service 2002b

2 Bedrock is exposed. Soil
 generally shallow

 Soil drainage 
 (Eastern United States) Categorical SoilDrn Plot level

U.S. Department of Agriculture
 Forest Service 2002b

1 Well drained
2 Generally wet
3 Excessively dry

Soil wetness
 (Western United States) Categorical SoilWt Plot level

U.S. Department of Agriculture
 Forest Service 2002b

1 Wet
2 Moderately dry
3 Very dry

Landscape scale
 Ambient ozone Continuous SUM06c 5-Km raster cells U.S. Environmental Protection 

 Agency 2004
 Available water capacity Continuous Awc 1: 250,000 Miller and White 1998
 Palmer drought severity Continuous PDSId U.S. Climate Division National Climate Data Center 1994
 Aspect Continuous AspGa 3 arc-second raster 

cells
U.S. Geological Survey 1993

 Terrain relative moisture
 index

Continuous TRMIe 3 arc-second raster 
cells

U.S. Geological Survey 1993

 Population density Continuous Pden U.S. counties U.S. Census Bureau 2004

a Aspect was rescaled to a continuous variable denoting northernness scaled 0 to 2 by [cos(aspect)+1] to account for the fact that, for example, aspects of 15° and 345° have the same 
northernness.
b Forest Service, U.S. Department of Agriculture, 2002. Forest inventory and analysis national core field guide: field data collection procedures for phase 3 plots. Version 1.7. Internal report. 
Vol. 2. [Not paged]. On file with: Forest Service, U.S. Department of Agriculture, Forest Inventory and Analysis, Rosslyn Plaza, 1620 North Kent Street, Arlington, VA 22209.
c For each U.S. Environmental Protection Agency ozone monitoring station the sum of all hourly ozone concentration > 0.06 parts per million (ppm) were summarized from 8 a.m. to 8 p.m. for 
June, July, and August for 2003, 2004, and 2005. SUM06 (ppm-hours) ozone values were assigned to each biomonitoring plot by inverse distance weighting interpolation.
d Average June, July, and August Palmer Drought Severity Index (PDSI) was calculated for each climate division in the coterminous United States for each year (2003, 2004, 2005). PDSI is 
scaled from ~-7 to 7 where negative values indicate drought stress.
e TRMI is generated using a digital elevation model. The algorithm identifies topographic position, e.g., ridgetops and valley bottoms, to assign a moisture index scale from 0 (dry) to 60 (wet).
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Figure 6.1—Ozone biomonitoring sampling grid for the coterminous United States. The points represent the approximate center of each sampling polygon.
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Methods

Logistic regression (SAS 2004) was used to 
examine the relationship among biosite ozone 
injury, microscale variables, and landscape-
scale variables. Because of different sampling 
intensities, each biosite was weighted by the area 
it represents (fig. 6.1). The general form of the 
linear logistic model is: 

= +Log a B x( /( ) `1 –π π

where

Log = natural logarithm of (∙)

π = the probability that the response equals  
1 (ozone injury recorded) given the vector of 
explanatory variables x

a = intercept

B = vector of parameter estimates

The explanatory variables in x can be 
binary, categorical, ordinal, or continuous; 
and interactions among variables can also 
be examined. Because of potential regional 
differences in environmental conditions and 
ambient ozone concentrations, each FIA region 
[North, South, Interior West, and Pacific 
Northwest (which includes California)] was 
examined independently. Also, the North and 
South FIA regions collect information on soil 
drainage on biomonitoring plots while the 
Interior West and Pacific Northwest FIA regions 
collect information on soil wetness (table 6.2). 
Specific interactions were selected to examine 
the potential relationship among ozone injury, 
ambient ozone concentrations, terrain position, 

and moisture based on landscape and plot-level 
variables. In the East (North and South FIA 
regions), the full set of explanatory variables 
tested is denoted xe and in the West (Interior 
West and Pacific Northwest FIA regions) the full 
set of explanatory variables tested is denoted xw

where

=
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*
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*

and

The null hypothesis for the full model  
(Ho: B = 0) was tested and each variable was 
examined. Variables that were not significant 
at the p = 0.10 level were removed from the 
models. The final model selected for each region 
was the model where B ≠ 0, each variable was 
significant at p < 0.10, and the minimum Akaike 
Information Criterion value was minimized (SAS 
Institute 2004). The generalized coefficient of 
determination (pseudo-R2) was used to examine 
the predictive power of each final model. 
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Injured  
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Results

From 2003 through 2005, ozone injury to 
bioindicator plants was recorded in every FIA 
region except for the Interior West (fig. 6.2). 
Injury occurrence was relatively constant in 
the North and Pacific Northwest FIA regions 
(2003 through 2005). However, in the South 
FIA region, the number of biomonitoring plots 
with injury tended to decrease even though 
the total number of plots examined increased 
between 2003 and 2005 (fig. 6.2). The Interior 
West FIA region was not examined using the 
logistic regression approach because of the lack 
of recorded ozone injury, but ambient ozone 
concentrations from 2003 through 2005 in the 
Interior West were comparable to the other FIA 
regions (fig. 6.3). 

Statistically significant logistic regression 
models were developed for the North, Pacific 
Northwest, and South FIA regions (table 6.3).

The models for the three regions all contained 
SUM06 as a significant explanatory variable. 
Most of the interaction terms examined were 
not statistically significant. However, in the 
South FIA region, the SUM06*PDSI interaction 
was significant (table 6.4). TerrPos was the  
only microscale variable selected for the final 
model and only was used in the North FIA 

Figure 6.2—The number of total ozone biosites measured and the number of ozone 
biosites with injury, recorded by Forest Inventory and Analysis region (IW=Interior 
West, NO=North, PW=Pacific Northwest, SO=South) and year. (Data source: U.S. 
Department of Agriculture, Forest Service Forest Inventory and Analysis Program)



Table 6.3—Results from logistic regression model for each Forest Inventory and Analysis region

Region Explanatory variables (x) Chi-square p-value R2 Percent of concordant pairs
percent

North SUM06, TerrPos, Pden 103.31 0.0001 0.0638 66.6
Pacific Northwest PDSI, SUM06, Pden 94.96 0.0001 0.1949 84.1
South PDSI, PDSI*SUM06 89.78 0.0001 0.0924 73.7
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Figure 6.3—Average area weighted SUM06 ozone exposure for each Forest Inventory and Analysis region 
(IW=Interior West, NO=North, PW=Pacific Northwest, SO=South) and year. Error bars represent the 
minimum and maximum observed SUM06 value. (Data source: U.S. Environmental Protection Agency)
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Table 6.4—Significance of explanatory variables for each logistic regression 
model and Forest Inventory and Analysis region

Region Explanatory variables 
(x)

Parameter estimate 
(B)

p-value

North Intercept (a) −5.55 0.0001
SUM06 0.024 0.0033
TerrPos 0.0032

    1 0.241 0.09
    2 −0.234 0.2404
    3 0.201 0.2519
    4 0.421 0.0002

Pden 0.359 0.0001
Pacific Northwest Intercept (a) −6.326 0.0001

PDSI 0.124 0.329
SUM06 0.053 0.001

Pden 0.292 0.0044
South Intercept (a) −1.79 0.0001

PDSI −0.325 0.0016
PDSI*SUM06 0.045 0.0001
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region model. Terrain position 1 (ridgetop or 
upperslope) and terrain position 4 (flatland 
unrelated to slope) had lower p-values (table 
6.4) than the other terrain position categories. 
The best model for predicting the probability of 
ozone injury to bioindicator plants, based on 
R2 and the percent of concordant pairs, was the 
Pacific Northwest model. The models for the 
South and North FIA regions had R2 of 0.092 
and 0.064, respectively. 

Discussion

Ozone injury to plants is related to the 
ambient ozone concentration, plant species’ 
sensitivity to ozone, soil moisture, and light, 
all of which influence ozone uptake by plants. 
The purpose of this analysis was to examine 
the relationship between ozone injury to 
bioindicator plants and microscale and 
landscape-scale explanatory variables. Generally, 
only landscape-scale explanatory variables were 
selected for the final model for each FIA region 
with terrain position as the exception in the 
North FIA region. However, the terrain relative 
moisture index landscape-scale variable can be 
used in place of the terrain position variable with 
minimal impact to the predictive power of the 
model. Smith and others (2007) suggested using 
either inverse distance weighting interpolation 
or kriging to predict the likelihood of ozone 
injury to bioindicator plants at unmeasured 

locations but also encouraged the development 
of spatially explicit models that include 
explanatory variables such as ambient ozone 
concentrations and moisture conditions.  
The results presented here indicate that 
landscape-scale variables were statistically 
significant most frequently, i.e., explained 
significant amounts of the variation in ozone 
injury to bioindicator plants.
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The significance of SUM06 ozone and PDSI 
from this analysis corresponds with results 
from Smith and others (2003) and Davis and 
Orendovici (2006). Davis and Orendovici (2006) 
found a statistically significant relationship 
between the incidences of ozone symptoms on 
vegetation in the Edwin B. Forsythe National 
Wildlife Refuge (New Jersey) and plant species, 
PDSI, and the interaction of two different 
ambient ozone statistics. Smith and others 
(2003) found that SUM06 ozone and PDSI 
were significant explanatory variables in a 
linear regression to predict a composite ozone 
bioindicator variable in the North FIA region. 
The statistical significance of county-level 
population density was not tested in the studies 
described above. In fact, population density is 
not a causal mechanism of ozone-induced foliar 
injury, and the correlation between population 
density and SUM06 ozone was < 0.23 in the 
North, South, and Pacific Northwest FIA regions. 
However, population density may serve as a 
surrogate for other explanatory variables not 
included in this analysis.

The results presented in this chapter identify 
key landscape-level variables that account for 
statistically significant amounts of the variance 
of ozone-induced plant injury from ozone. 
While statistically significant logistic models 
were developed for each FIA region where 

ozone injury occurred on biomonitoring sites, 
logistic regression provided little improvement, 
in respect to predictive power, over standard 
spatial interpolation techniques such as kriging 
and inverse distance weighting. However, the 
results from our analysis provide direction for 
future research:

1. Future modeling efforts should focus on 

using landscape-scale variables rather than 

microscale (plot-level) variables.

2. Predictive models vary regionally and 

perhaps subregionally. Future modeling 

efforts should examine the importance 

of using subregional areas for model 

development.

3. The SUM06 index was used to represent 

ambient ozone exposure. Based on 

suggestions from Davis and Orendovici 

(2006), other ambient ozone indices such as 

N100 (number of hours that ambient ozone 

is ≥ 100 parts per billion) may be more 

appropriate explanatory variables.

4. PDSI is derived by climate division, which 

may be too coarse for this kind of modeling. 

Other variables such as the ratio of 

precipitation to evapotranspiration should be 

examined as a potential fine-scale surrogate 

for PDSI. 
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