
 
 

 
 

 

CHAPTER 3. 
Large-Scale Patterns of 
Forest Fire Occurrence 
across the 50 United States 
and the Caribbean 
Territories, 2017 

KEVIN M. POTTER 

INTRODUCTION 

A
s a pervasive disturbance agent operating at 
many spatial and temporal scales, wildland 
fre is a key abiotic factor affecting forest 

health both positively and negatively. In some 
ecosystems, for example, wildland fres have 
been essential for regulating processes that 
maintain forest health (Lundquist and others 
2011). Wildland fre is an important ecological 
mechanism that shapes the distributions of 
species, maintains the structure and function of 
fre-prone communities, and acts as a signifcant 
evolutionary force (Bond and Keeley 2005). 
At the same time, wildland fres have created 
forest health (i.e., sustainability) problems in 
some ecosystems (Edmonds and others 2011). 
Specifcally, fre outside the historic range of 
frequency and intensity can impose extensive 
ecological and socioeconomic impacts. Current 
fre regimes on more than half of the forested 
area in the conterminous United States have 
been moderately or signifcantly altered 
from historical regimes, potentially altering 
key ecosystem components such as species 
composition, structural stage, stand age, canopy 
closure, and fuel loadings (Schmidt and others 
2002). As a result of intensive fre suppression 
efforts during most of the 20th century, the 
forest area burned annually decreased from 
approximately 16–20 million ha (40–50 million 
acres) in the early 1930s to about 2 million ha 

(5 million acres) in the 1970s (Vinton 2004). 
Understanding existing fre regimes is essential 
for properly assessing the impact of fre on 
forest health because changes to historical fre 
regimes can alter forest developmental patterns, 
including the establishment, growth, and 
mortality of trees (Lundquist and others 2011). 

Fire regimes have been dramatically altered by 
fre suppression (Barbour and others 1999) and 
by the introduction of nonnative invasive plants, 
which can change fuel properties and in turn 
both affect fre behavior and alter fre regime 
characteristics such as frequency, intensity, 
type, and seasonality (Brooks and others 
2004). Fires in some regions and ecosystems 
have become larger, more intense, and more 
damaging because of the accumulation of fuels 
as a result of prolonged fre suppression (Pyne 
2010). Such large wildland fres also can have 
long-lasting social and economic consequences, 
which include the loss of human life and 
property, smoke-related human health impacts, 
and the economic cost and dangers of fghting 
the fres themselves (Gill and others 2013, 
Richardson and others 2012). In some regions, 
plant communities have experienced or are 
undergoing rapid compositional and structural 
changes as a result of fre suppression (Nowacki 
and Abrams 2008). Additionally, changes in 
fre intensity and recurrence could result in 
decreased forest resilience and persistence 
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(Lundquist and others 2011), and fre regimes 
altered by global climate change could cause 
large-scale shifts in vegetation spatial patterns 
(McKenzie and others 1996). Given the 
relationships of fres to forest dynamics, it is 
important to monitor and assess spatiotemporal 
trends in forest fres across the United States and 
its territories. 

This chapter presents analyses of daily 
satellite-based fre occurrence data that map 
and quantify the locations and intensities 
of fre occurrences spatially across the 
conterminous United States, Alaska, Hawaii, 
and the Caribbean territories in 2017. It also 
compares 2017 fre occurrences, within a 
geographic context, to all the recent years for 
which such data are available. Quantifying and 
monitoring such large-scale patterns of fre 
occurrence across the United States can help 
improve our understanding of the ecological 
and economic impacts of fre as well as the 
appropriate management and prescribed use of 
fre. Specifcally, large-scale assessments of fre 
occurrence can help identify areas where specifc 
management activities may be needed, or where 
research into the ecological and socioeconomic 
impacts of fres may be required. 

METHODS 
Data 

Annual monitoring and reporting of active 
wildland fre events using the Moderate 
Resolution Imaging Spectroradiometer (MODIS) 

Active Fire Detections for the United States 
database (USDA Forest Service 2018) allow 
analysts to spatially display and summarize fre 
occurrences across broad geographic regions 
(Coulston and others 2005; Potter 2012a, 2012b, 
2013a, 2013b, 2014, 2015a, 2015b, 2016, 2017, 
2018). A fre occurrence is defned as one daily 
satellite detection of wildland fre in a 1-km 
pixel, with multiple fre occurrences possible 
on a pixel across multiple days resulting from a 
single wildland fre that lasts more than a single 
day. The data are derived using the MODIS 
Rapid Response System (Justice and others 
2002, 2011) to extract fre location and intensity 
information from the thermal infrared bands 
of imagery collected daily by two satellites at a 
resolution of 1 km, with the center of a pixel 
recorded as a fre occurrence (USDA Forest 
Service 2018). The Terra and Aqua satellites’ 
MODIS sensors identify the presence of a fre 
at the time of image collection, with Terra 
observations collected in the morning and Aqua 
observations collected in the afternoon. The 
resulting fre occurrence data represent only 
whether a fre was active because the MODIS 
data bands may not differentiate between a 
hot fre in a relatively small area (0.01 km2, 
for example) and a cooler fre over a larger 
area (1 km2, for example) if the foreground 
to background temperature contrast is not 
suffciently high. The MODIS Active Fire 
database does well at capturing large fres during 
cloud-free conditions but may underrepresent 
rapidly burning, small, and low-intensity fres, 



 

as well as fres in areas with frequent cloud 
cover (Hawbaker and others 2008). For large-
scale assessments, the dataset represents a good 
alternative to the use of information on ignition 
points, which may be preferable but can be 
diffcult to obtain or may not exist (Tonini and 
others 2009). For more information about the 
performance of this product, see Justice and 
others (2011). 

It is important to underscore that estimates of 
burned area and calculations of MODIS-detected 
fre occurrences are two different metrics for 
quantifying fre activity within a given year. 
Most importantly, the MODIS data contain 
both spatial and temporal components because 
persistent fre will be detected repeatedly over 
several days on a given 1-km pixel. In other 
words, a location can be counted as having a 
fre occurrence multiple times, once for each 
day a fre is detected at the location. Analyses 
of the MODIS-detected fre occurrences, 
therefore, measure the total number of daily 
1-km pixels with fre during a year, as opposed 
to quantifying only the area on which fre 
occurred at some point during the course of the 
year. A fre detected on a single pixel on every 
day of the year would be equivalent to 365 
fre occurrences. 

It is worth noting that the Terra and Aqua 
satellites, which carry the MODIS sensors, 
were launched in 1999 and 2002, respectively, 

and will eventually be decommissioned. An 
alternative fre occurrence data source is the 
Visible Infrared Imaging Radiometer Suite 
(VIIRS) sensor on board the Suomi National 
Polar-orbiting Partnership (Suomi NPP) weather 
satellite. The transition to this new data source 
will require a comparison of fre occurrence 
detections between it and MODIS. 

Analyses 

These MODIS products for 2017, and for the 
16 preceding full years of data, were processed 
in ArcMap® (ESRI 2015) to determine the 
number of fre occurrences per 100 km2 

(10 000 ha) of forested area for each ecoregion 
section in the conterminous United States 
(Cleland and others 2007) and Alaska (Nowacki 
and Brock 1995), and for each of the major 
islands of Hawaii and of the Caribbean territories 
of Puerto Rico and the U.S. Virgin Islands. 
This forest fre occurrence density measure 
for the conterminous 48 States and Alaska 
was calculated after screening out wildland 
fres on nonforested pixels using a forest cover 
layer derived from MODIS imagery by the 
U.S. Department of Agriculture Forest Service, 
Remote Sensing Applications Center (RSAC) 
(USDA Forest Service 2008). The same process 
was repeated for the Hawaiian islands using 
30-m vegetation type data from the LANDFIRE 
program (LANDFIRE 2014), resampled to 1 km, 
and for Puerto Rico and the U.S. Virgin Islands 
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using 30-m landcover data (also resampled to 
1 km) from the Forest Service International 
Institute of Tropical Forestry (IITF) that were 
derived from a cloud-free Landsat image 
mosaic developed in cooperation with RSAC 
(Kennaway and Helmer 2007, Kennaway and 
others 2008). The total numbers of forest fre 
occurrences were also determined separately for 
the conterminous States, Alaska, Hawaii, and 
the Caribbean territories. 

The fre occurrence density value for each of 
the ecoregion sections and the Hawaiian and 
Caribbean islands in 2017 was then compared 
with the mean fre density values for the frst 16 
full years of MODIS Active Fire data collection 
(2001–2016). Specifcally, the difference of the 
2017 value and the previous 16-year mean 
for an ecoregion was divided by the standard 
deviation across the previous 16-year period, 
assuming a normal distribution of fre density 
over time in the ecoregion. The result for each 
ecoregion was a standardized z-score, which 
is a dimensionless quantity describing the 
degree to which the fre occurrence density in 
the ecoregion in 2017 was higher, lower, or 
the same relative to all the previous years for 
which data have been collected, accounting 
for the variability in the previous years. The 
z-score is the number of standard deviations 
between the observation and the mean of the 
historic observations in the previous years. 

Approximately 68 percent of observations would 
be expected within one standard deviation of 
the mean, and 95 percent within two standard 
deviations. Near-normal conditions are classifed 
as those within a single standard deviation of the 
mean, although such a threshold is somewhat 
arbitrary. Conditions between about one 
and two standard deviations of the mean are 
moderately different from mean conditions, but 
are not signifcantly different statistically. Those 
outside about two standard deviations would be 
considered statistically greater than or less than 
the long-term mean (at p <0.025 at each tail of 
the distribution). 

Additionally, we used the Spatial Association 
of Scalable Hexagons (SASH) analytical 
approach to identify forested areas in the 
conterminous United States with higher-
than-expected fre occurrence density in 
2017. This method identifes locations where 
ecological phenomena occur at greater or lower 
occurrences than expected by random chance 
and is based on a sampling frame optimized for 
spatial neighborhood analysis, adjustable to the 
appropriate spatial resolution, and applicable to 
multiple data types (Potter and others 2016). 
Specifcally, it consists of dividing an analysis 
area into scalable equal-area hexagonal cells 
within which data are aggregated, followed by 
identifying statistically signifcant geographic 
clusters of hexagonal cells within which mean 



values are greater or less than those expected by 
chance. To identify these clusters, we employed 
a Getis-Ord Gi* hot spot analysis (Getis and Ord 
1992) in ArcMap® 10.3 (ESRI 2015). 

The spatial units of analysis were 9,810 
hexagonal cells, each approximately 834 
km2 in area, generated in a lattice across the 
conterminous United States using intensifcation 
of the Environmental Monitoring and 
Assessment Program (EMAP) North American 
hexagon coordinates (White and others 1992). 
These coordinates are the foundation of a 
sampling frame in which a hexagonal lattice 
was projected onto the conterminous United 
States by centering a large base hexagon over 
the region (Reams and others 2005, White 
and others 1992). This base hexagon can 
be subdivided into many smaller hexagons, 
depending on sampling needs, and serves as the 
basis of the plot sampling frame for the Forest 
Inventory and Analysis (FIA) program (Reams 
and others 2005). Importantly, the hexagons 
maintain equal areas across the study region 
regardless of the degree of intensifcation of 
the EMAP hexagon coordinates. In addition, 
the hexagons are compact and uniform in 
their distance to the centroids of neighboring 
hexagons, meaning that a hexagonal lattice 
has a higher degree of isotropy (uniformity in 
all directions) than does a square grid (Shima 
and others 2010). These are convenient and 
highly useful attributes for spatial neighborhood 

analyses. These scalable hexagons also are 
independent of geopolitical and ecological 
boundaries, avoiding the possibility of different 
sample units (such as counties, States, or 
watersheds) encompassing vastly different areas 
(Potter and others 2016). We selected hexagons 
834 km2 in area because this is a manageable 
size for making monitoring and management 
decisions in analyses across the conterminous 
United States (Potter and others 2016). 

Fire occurrence density values for each 
hexagon were quantifed as the number of forest 
fre occurrences per 100 km2 of forested area 
within the hexagon. The Getis-Ord Gi* statistic 
was used to identify clusters of hexagonal cells 
with fre occurrence density values higher than 
expected by chance. This statistic allows for the 
decomposition of a global measure of spatial 
association into its contributing factors, by 
location, and is therefore particularly suitable 
for detecting outlier assemblages of similar 
conditions in a dataset, such as when spatial 
clustering is concentrated in one subregion of 
the data (Anselin 1992). 

Briefy, Gi* sums the differences between the 
mean values in a local sample, determined in 
this case by a moving window of each hexagon 
and its 18 frst- and second-order neighbors 
(the 6 adjacent hexagons and the 12 additional 
hexagons contiguous to those 6) and the global 
mean of the 7,595 forested hexagonal cells (of 

55 



SE
CT

IO
N 

1  
   C

ha
pte

r 3
Fo

res
t H

ea
lth

 M
on

ito
rin

g

  

      

     

Gi *(d) = I;wi; (d)x;-w;x • 

s* (nsii)-w;2 
n-1 

56 

the total 9,810) in the conterminous United 
States. As described in Laffan (2006), it is 
calculated as 

where 

Gi* = the local clustering statistic (in this case, 
for the target hexagon) 

i = the center of local neighborhood (the 
target hexagon) 

d = the width of local sample window (the 
target hexagon and its frst- and second-order 
neighbors) 

xj = the value of neighbor j 

wij = the weight of neighbor j from location i 
(all the neighboring hexagons in the moving 
window were given an equal weight of 1) 

n = number of samples in the dataset (the 
7,595 forested hexagons) 

Wi* = the sum of the weights 

s* 1i = the number of samples within d of the 
central location (19: the focal hexagon and its 
18 frst- and second-order neighbors) 

x̄* = the mean of whole dataset (in this case, 
for all 7,595 forested hexagons) 

s* = the standard deviation of whole dataset 
(for all 7,595 forested hexagons) 

G * is standardized as a z-score with a meani 
of 0 and a standard deviation of 1, with values 
>1.96 representing signifcant local clustering of 
higher fre occurrence densities (p <0.025) and 
values <-1.96 representing signifcant clustering 
of lower fre occurrence densities (p <0.025), 
because 95 percent of the observations under 
a normal distribution should be within 
approximately two standard deviations of 
the mean (Laffan 2006). Values between 
-1.96 and 1.96 have no statistically signifcant 
concentration of high or low values; a hexagon 
and its 18 neighbors, in other words, have a 
normal range of both high and low numbers of 
fre occurrences per 100 km2 of forested area. 
It is worth noting that the threshold values 
are not exact because the correlation of spatial 
data violates the assumption of independence 
required for statistical signifcance (Laffan 
2006). In addition, the Getis-Ord approach does 
not require that the input data be normally 
distributed, because the local Gi* values are 
computed under a randomization assumption, 
with Gi* equating to a standardized z-score that 
asymptotically tends to a normal distribution 
(Anselin 1992). The z-scores are considered to 
be reliable, even with skewed data, as long as 
the local neighborhood encompasses several 
observations (ESRI 2015), in this case, via the 
target hexagon and its 18 frst- and second-
order neighbors. 



RESULTS AND DISCUSSION 
Trends in Forest Fire Occurrence 
Detections for 2017  

The MODIS Active Fire database recorded 
92,864 forest fre occurrences across the 
conterminous United States in 2017, the 
ffth most in 17 full years of data collection 
and the most since 2014 (fg. 3.1). This was 
approximately 95 percent more than in 2016 
(47,744 total forest fre occurrences), and 
about 43 percent higher than the annual mean 
of 64,913 forest fre occurrences across the 
previous 16 years of data collection. In Alaska, 
meanwhile, the MODIS database captured 2,043 
forest fre occurrences in 2017, about 7 percent 
less than the preceding year (2,196) and about 
82 percent less than the previous 16-year annual 

mean of 11,317. Meanwhile, Hawaii had 118 
fre occurrences in 2017, a decrease of about 
90 percent from the previous year (1,210) 
and 72 percent below the average of 426 fre 
occurrences over the previous 16 years. Finally, 
10 forest fre occurrences were detected in 
Puerto Rico, 27 percent fewer than the previous 
average of 13.7 per year. 

The increase in the total number of fre 
occurrences across the United States is generally 
consistent with the offcial wildland fre statistics 
(National Interagency Coordination Center 
2018). In 2017, 71,499 wildland fres were 
reported across the United States, an increase 
from 67,743 in 2016. At the same time, the 
area burned nationally (4 057 413 ha) was 
153 percent above the 10-year annual average 
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Figure 3.1—Forest fre occurrences detected by MODIS from 2001 to 2017 for the 
conterminous United States, Alaska, and Hawaii, and for the entire Nation combined. 
(Data source: U.S. Department of Agriculture Forest Service, Remote Sensing 
Applications Center, in conjunction with the NASA MODIS Rapid Response group) 
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and 73 percent greater than the area burned 
in 2016 (2 339 815 ha) (National Interagency 
Coordination Center 2017, 2018). Also in 2017, 
44 wildland fres and fre complexes exceeded 
16 187 ha, compared to 19 in 2016 and 52 in 
2015 (National Interagency Coordination Center 
2017, 2018). As noted in the Methods section, 
estimates of burned area are different metrics 
for quantifying fre activity than calculations of 
MODIS-detected fre occurrences, though the 
two may be correlated. 

Areas with the highest fre occurrence 
densities were in the Pacifc Northwest region 
and in California (fg. 3.2). Precipitation was 
above normal in these areas early in 2017, 
promoting signifcant growth of fne fuels; 
July and August were then very dry in many 
areas, except in central and southern parts of 
California, which dried considerably later in the 
year with the lack of autumn rain combined 
with strong winds (National Interagency 
Coordination Center 2018). The ecoregion 
section with the highest fre occurrence density 
by far was M332B–Northern Rockies and 
Bitterroot Valley in western Montana, with 41.8 
fre occurrences/100 km2 of forest (table 3.1). 
This was the location of the Rice Ridge Fire, a 
lightning-ignited fre that burned 64 825 ha 
between July 24 and October 17 and cost 
approximately $49.3 million in damages and 
containment (National Interagency Coordination 
Center 2018). Fire occurrence densities were 
also very high in M261A–Klamath Mountains 
in northwestern California and southwestern 
Oregon (27.9 fre occurrences/100 km2 of 

forest), location of the Chetco Bar Fire, which 
scorched 77 346 ha from its lightning ignition on 
July 12 until October 26 and cost approximately 
$72 million to contain (National Interagency 
Coordination Center 2018). Two other ecoregion 
sections experienced >20 fres/100 km2 of forest: 
M333C–Northern Rockies (22.0) and 261B– 
Southern California Coast (20.7) (table 3.1). 
The latter of these was the site of the 109 
265-ha Thomas Fire, which burned in Ventura 
and Santa Barbara Counties from December 
4 through the end of the year and cost at 
least $123.8 million (National Interagency 
Coordination Center 2018). This was the largest 
wildfre in recorded California history (CAL 
FIRE 2018). 

Fire occurrence densities were also 
comparatively quite high (12.1–24 fre 
occurrences/100 km2 of forest) throughout 
the Cascade Range of Washington and Oregon 
(M242D–Northern Cascades and M242B– 
Western Cascades) and in parts of the northern 
Rockies in central and northern Idaho and 
western Montana (M332A–Idaho Batholith and 
M333D–Bitterroot Mountains) (fg. 3.2). 

Other ecoregion sections in the Southeast and 
scattered throughout the West had moderately 
high fre occurrence densities (6.1–12 fre 
occurrences/100 km2 of forest) (fg. 3.2). In the 
Southeast, this included an area from southern 
Mississippi along the Gulf Coast (232B–Gulf 
Coastal Plains and Flatwoods) and northeast 
through Georgia and South Carolina into North 
Carolina (232J–Southern Atlantic Coastal 
Plains and Flatwoods). Fire occurrence densities 
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Figure 3.2—The number of forest fre occurrences, per 100 km  (10 000 ha) of forested area, by ecoregion section within the conterminous 48 States, for 
2017. The gray lines delineate ecoregion sections (Cleland and others 2007). Forest cover is derived from MODIS imagery by the Forest Service Remote 
Sensing Applications Center. (Source of fre data: U.S. Department of Agriculture Forest Service, Remote Sensing Applications Center, in conjunction with 
the NASA MODIS Rapid Response group) 
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Table 3.1—The 15 ecoregion sections in the conterminous United States with the 
highest fre occurrence densities in 2017 

Forest  Fire  
Section Name area occurrences Density 

2 km 
M332B Northern Rockies and Bitterroot Valley 158.8 6,643 41.8 
M261A Klamath Mountains 343.1 9,566 27.9 
M333C Northern Rockies 172.7 3,807 22.0 
261B Southern California Coast 40.7 843 20.7 
M332A Idaho Batholith 361.0 7,007 19.4 
M242D Northern Cascades 230.7 3,374 14.6 
M242B Western Cascades 417.7 6,041 14.5 
M333D Bitterroot Mountains 222.9 2,850 12.8 
M333B Flathead Valley 160.6 1,575 9.8 
263A Northern California Coast 123.2 1,184 9.6 
322C Colorado Desert 0.4 4 9.1 
M261F Sierra Nevada Foothills 71.2 626 8.8 
M261E Sierra Nevada 438.1 3,708 8.5 
232J Southern Atlantic Coastal Plains and Flatwoods 439.5 3,551 8.1 
232B Gulf Coastal Plains and Flatwoods 732.3 5,664 7.7 
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60 
were also moderately high in two neighboring 
ecoregion sections in Arkansas and Oklahoma: 
231G–Arkansas Valley and 255A–Cross Timbers 
and Prairie. 

Additionally, moderately high fre occurrence 
densities were recorded in several Western 
ecoregion sections, all with 6.1–12 fre 
occurrences/100 km2 of forest: 321A–Basin and 
Range, in southeastern Arizona, southern New 
Mexico, and far western Texas; M261E–Sierra 
Nevada and M261F–Sierra Nevada Foothills, 
in California; 263A–Northern California 

Coast and M261B–Northern California Coast 
Ranges; and M333B–Flathead Valley, in 
northwestern Montana. 

Meanwhile, Alaska experienced above-
average temperatures, but periodic precipitation 
events minimized the fre impacts of the heat 
(National Interagency Coordination Center 
2018). Fire occurrence densities were low 
across the State (fg. 3.3), with the exception 
of M139B–Olgivie Mountains in eastern Alaska 
(3.6 fres occurrences/100 km2 of forest). This 
was where the 37 846-ha Campbell River Fire 
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Figure 3.3—The number of forest fre occurrences, per 100 km  (10 000 ha) of forested area, by ecoregion section within Alaska, for 2017. The gray lines 
delineate ecoregion sections (Nowacki and Brock 1995). Forest cover is derived from MODIS imagery by the Forest Service Remote Sensing Applications 
Center. (Source of fre data: U.S. Department of Agriculture Forest Service, Remote Sensing Applications Center, in conjunction with the NASA MODIS 
Rapid Response group) 
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burned from late June into early October, 
extending well into the neighboring Yukon 
Territory of Canada. 

In Hawaii, lava fows from the 35-year-long 
eruption of Pu‘u ‘Ō‘ō, a vent on the fank of the 
Kīlauea volcano on the Big Island, continued 
to be the cause of most forest fre occurrences. 
Fire occurrence density on the Big Island was 
2.9/100 km2 of forest in 2017 (fg. 3.4), one-
tenth of the 29.6 fre occurrences/100 km2 of 
forest recorded in 2016 (Potter 2018). All the 
other islands in the archipelago experienced <1 
fre occurrence/100 km2 of forest. 

Finally, all of the islands constituting the U.S. 
Caribbean territories had <1 fre occurrence/100 
km2 of forest in 2017 (fg. 3.5). 

Comparison to Longer Term Trends 

The nature of the MODIS Active Fire data 
makes it possible to contrast, for each ecoregion 
section and Hawaiian and Caribbean island, 
short-term (1-year) forest fre occurrence 
densities with longer term trends encompassing 
the frst 16 full years of data collection (2001– 
2016). In general, the ecoregion sections with 
the highest annual fre occurrence means are 
located in the northern Rocky Mountains, the 
Southwest, California, Oklahoma, and the Gulf 
Coastal Plain, while most ecoregion sections 

within the Northeastern, Midwestern, Middle 
Atlantic, and Appalachian regions experienced 
<1 fre occurrence/100 km2 of forest annually 
during the multiyear period (fg. 3.6A). The 
forested ecoregion section that experienced the 
most fre occurrences each year on average was 
M332A–Idaho Batholith in central Idaho (mean 
annual fre occurrence density of 13.0) (table 
3.2), which also had a high fre occurrence 
density in 2017. Other ecoregion sections with 
high mean fre occurrence densities (6.1–12.0 
fre occurrences/100 km2 of forest) were located 
along the Gulf Coast in the Southeast; in coastal, 
northern, and central areas of California; 
in central Arizona and New Mexico; in the 
northern Rocky Mountains; and in central 
Oklahoma (table 3.2). The ecoregion section 
with the greatest variation in fre occurrence 
densities from 2001 to 2016 was M332A–Idaho 
Batholith, with more moderate variation in 
California, northern Washington, southern 
and northeastern Oregon, western Montana, 
central Arizona and west-central New Mexico, 
and eastern North Carolina (fg. 3.6B). Less 
variation occurred throughout the central and 
northern Rocky Mountain States, the Southeast, 
and central Oregon and Washington. The lowest 
levels of variation occurred throughout most of 
the Midwest and Northeast. 



Maui 

Hawai’i 

O’ahu 

Moloka’i 

Kaua’i 

Kaho’olawe 

Lana’i 

Ni’ihau 

~ 
~ 

Fire occurrences 
per 100 km2 forest, 2017 

0–1 
1.01–3 
3.01–6 
6.01–12 
12.01–24 
> 24 
Island 

Figure 3.4—The number of forest fre occurrences, per 100 km2 (10 000 ha) of forested area, by island in Hawaii, for 2017. Background forest 
cover is derived from the LANDFIRE program (LANDFIRE 2014). (Source of fre data: U.S. Department of Agriculture Forest Service, Remote 
Sensing Applications Center, in conjunction with the NASA MODIS Rapid Response group) 
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Figure 3.5—The number of forest fre occurrences, per 100 km2 (10 000 ha) of forested area, by island in Puerto Rico and the U.S. Virgin 
Islands, for 2017. Forest cover is from the Forest Service International Institute of Tropical Forestry, derived from a cloud-free Landsat 
image mosaic developed in cooperation with Forest Service Remote Sensing Applications Center (Kennaway and Helmer 2007, Kennaway  
and others 2008). 
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Figure 3.6—(A) Mean number and
(B) standard deviation of forest fre 
occurrences per 100 km2 (10 000 ha) of
forested area from 2001 through 2016, by
ecoregion section within the conterminous
48 States. (C) Degree of 2017 fre
occurrence density excess or defciency
by ecoregion relative to 2001–2016 and
accounting for variation over that time
period. The gray lines delineate ecoregion
sections (Cleland and others 2007). Forest
cover is derived from MODIS imagery
by the Forest Service Remote Sensing
Applications Center. (Source of fre data: 
U.S. Department of Agriculture Forest
Service, Remote Sensing Applications
Center, in conjunction with the NASA 
MODIS Rapid Response group) 
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Table 3.2—The 14 ecoregion sections in the conterminous United States with the 
highest annual mean fre occurrence densities from 2001 through 2016 

 Mean annual 
 Forest  fre occurrence  

Section  Name area density 

2 km 

332F South Central and Red Bed Plains 1.5 18.4 
M332A Idaho Batholith 361.0 13.0 
331G Powder River Basin 6.2 10.3 
261A Central California Coast 58.3 9.7 
M262B 
251F 

Southern California Mountain and Valley 
Flint Hills 

155.3 
0.8 

8.6 
7.8 

322C Colorado Desert 0.4 7.8 
M261E Sierra Nevada 438.1 7.6 
M261A Klamath Mountains 343.1 6.9 
331A Palouse Prairie 28.3 6.6 
255A Cross Timbers and Prairie 79.0 6.4 
232B Gulf Coastal Plains and Flatwoods 732.3 6.3 
M313A White Mountains-San Francisco Peaks-Mogollon Rim 386.7 6.1 
M332F Challis Volcanics 90.0 6.1 
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As determined by the calculation of 
standardized fre occurrence z-scores, ecoregion 
sections in southern, central, and northern 
California; the Cascade Mountains of Oregon 
and Washington; and northern Idaho and 
northwestern Montana experienced signifcantly 
greater fre occurrence densities than normal 
in 2017, compared to the previous 16-year 
mean and accounting for variability over time 
(fg. 3.6C). The ecoregion section with the 
highest fre occurrence density in 2017 (M332B– 
Northern Rockies and Bitterroot Valley, fg. 3.2) 
also had a high z-score. Additionally, some 

ecoregion sections had moderately or slightly 
higher fre occurrence density than expected as 
shown by their z-scores (fg. 3.6C), including 
232H–Middle Atlantic Coastal Plains and 
Flatwoods in eastern North Carolina, Virginia, 
and the Delmarva Peninsula; M223A–Boston 
Mountains and 231G–Arkansas Valley in 
northern Arkansas and eastern Oklahoma; 212S– 
Northern Upper Peninsula in Michigan; M211B– 
New England Piedmont in Vermont and New 
Hampshire; and M331H–North-Central Highlands 
and Rocky Mountains in central Colorado. 



 

A handful of ecoregion sections across the 
country had lower fre occurrence densities in 
2017 compared to the longer term as indicated 
by their z-scores: M331A–Yellowstone Highlands 
in northwestern Wyoming, southwestern 
Montana, and northeastern Idaho; 234E– 
Arkansas Alluvial Plains in southeastern 
Arkansas; 211E–St. Lawrence and Champlain 
Valley in northern New York and Vermont; 
and 211C–Fundy Coastal and Interior in 
southeastern Maine. All had very low fre 
occurrence densities in 2017, and low or 
relatively low annual mean fre occurrence 
density and variation from 2001–2016. 

In Alaska, meanwhile, moderate mean fre 
occurrence density existed in the east-central 
and central parts of the State centered on 
the 139A–Yukon Flats ecoregion section and 
including M139A–Ray Mountains, M139B– 
Olgivie Mountains, and M139C–Dawson Range 
(fg. 3.7A). These same areas experienced the 
greatest degree of variability over the 16-year 
period preceding 2017 (fg. 3.7B). In 2017, 
only one ecoregion section, M213B–Kenai 
Mountains, was outside the range of near-
normal fre occurrence density (z-score >2), 
having many more fre occurrences compared 
to the mean of the previous 16 years and 
accounting for variability (fg. 3.7C). 

In Hawaii, both mean annual fre occurrence 
density (fg. 3.8A) and variability (fg. 3.8B) 
were highest on the Big Island during the 

2001–2016 period. The annual mean was <1 
fre occurrence/100 km2 of forest for all islands 
except the Big Island (12.7) and Kahoʻolawe 
(1.7). The annual fre occurrence standard 
deviation exceeded 1 for only the Big Island 
(17.7), Kahoʻolawe (5.1), and Lānaʻi (1.2). 
No Hawaiian island in 2017 was outside the 
range of near-normal fre occurrence density, 
controlling for variability over the previous 16 
years (z-score between -1 and 1) (fg. 3.7C). 

All the islands of the Caribbean territories 
had annual fre occurrence means and standard 
deviations <1 (fgs. 3.9A and 3.9B). Additionally, 
each of the islands was within the range of near-
normal fre occurrence density (z-score between 
-1 and 1) (fg. 3.9C). 

Geographical Hot Spots of Fire 
Occurrence Density 

Although summarizing fre occurrence data 
at the ecoregion section scale allows for the 
quantifcation of fre occurrence density across 
the country, a geographical hot spot analysis 
can offer insights into where, statistically, 
fre occurrences are more concentrated than 
expected by chance. In 2017, the SASH method 
detected three geographical hot spots of very 
high fre occurrence density (Gi* >12 and ≤24) 
(fg. 3.10). These corresponded with areas of 
high fre occurrence density (fg. 3.2), including 
M332B–Northern Rockies and Bitterroot Valley 
and M261A–Klamath Mountains (see above), as 
well as M332A–Idaho Batholith. 
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Figure 3.7—(A) Mean number and 
(B) standard deviation of forest fre 
occurrences per 100 km2 (10 000 ha) 
of forested area from 2001 through 
2016, by ecoregion section in Alaska. 
(C) Degree of 2017 fre occurrence 
density excess or defciency by ecoregion
relative to 2001–2016 and accounting
for variation over that time period. The
gray lines delineate ecoregion sections
(Nowacki and Brock 1995). Forest
cover is derived from MODIS imagery 
by the Forest Service Remote Sensing 
Applications Center. (Source of fre data: 
U.S. Department of Agriculture Forest
Service, Remote Sensing Applications
Center, in conjunction with the NASA 
MODIS Rapid Response group) 
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Figure 3.8—(A) Mean number and 
(B) standard deviation of forest fre 
occurrences per 100 km2 (10 000  
ha) of forested area from 2001 
through 2016, by island in Hawaii. 
(C) Degree of 2017 fre occurrence 
density excess or defciency by 
ecoregion relative to 2001–2016 
and accounting for variation over 
that time period. Background 
forest cover is derived from the 
LANDFIRE program (LANDFIRE 
2014). (Source of fre data: 
U.S. Department of Agriculture 
Forest Service, Remote Sensing 
Applications Center, in conjunction 
with the NASA MODIS Rapid 
Response group) 
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Figure 3.9—(A) Mean number and (B) standard deviation of forest fre occurrences per 100 km2 (10 000 ha) of forested area from 2001 through 2016, by island 
in Puerto Rico and the U.S. Virgin Islands. (C) Degree of 2017 fre occurrence density excess or defciency by ecoregion relative to 2001–2016 and accounting for 
variation over that time period. Forest cover is from the Forest Service International Institute of Tropical Forestry (IITF), derived from a cloud-free Landsat image 
mosaic developed in cooperation with Forest Service Remote Sensing Applications Center (Kennaway and Helmer 2007, Kennaway and others 2008). 
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Meanwhile, four hot spots of high fre 
occurrence density (Gi* >6 and ≤12) were 
identifed in the West, along with one in the East 
(fg. 3.10). One of these was in coastal California 
north of San Francisco Bay (in 263A–Northern 
California Coast, M261B–Northern California 
Coast Ranges, and M261C–Northern California 
Interior Coast Ranges), where several wildfres 
in October burned >99 000 ha, killing 44 and 
destroying 8,900 structures. It was the costliest 
wildfre complex in U.S. history, resulting in 
$9 billion in insurance claims (Cooper 2017). 

The SASH analysis also detected a geographic 
hot spot (Gi*) of high fre occurrence density in 
north-central Washington (M242D–Northern 
Cascades). This is where the Diamond Creek 
Fire scorched 51 910 ha between July 23 and 
October 5, costing $14.8 million in damages 
and containment. Other hot spots of similar 
intensity were located in southern Oregon 
(M242B–Western Cascades and M242C–Eastern 
Cascades), southeastern Arizona (321A–Basin 
and Range), and southwestern Georgia (232B– 
Gulf Coastal Plains and Flatwoods). 

Hot spots of moderate fre density in 2017 
(Gi* >2 and ≤6) were scattered elsewhere 
near the West Coast and in the Southeastern 
United States (fg. 3.10), including in the 
following regions: 

• Southern California (261B–Southern 
California Coast, M262B–Southern 
California Mountain and Valley, and M261E– 
Sierra Nevada) 

• Central California (two in M261E–Sierra 
Nevada and one in M262A–Central California 
Coast Ranges) 

• Central Nevada (M341D–West Great Basin 
and Mountains) 

• Central Washington (M242D–Northern 
Cascades, M242B–Western Cascades, and 
M242C–Eastern Cascades) 

• Eastern Oklahoma (255A–Cross Timbers and 
Prairie, 231G–Arkansas Valley, and M231A– 
Ouachita Mountains) 

• Southeastern Texas (232F–Coastal Plains and 
Flatwoods-Western Gulf and 232E–Louisiana 
Coastal Prairie and Marshes) 

• Southern Florida (232D–Florida Coastal 
Lowlands-Gulf and 232G–Florida Coastal 
Lowlands-Gulf) 

• Coastal Plain of South Carolina (232C– 
Atlantic Coastal Flatwoods) 

CONCLUSIONS AND FUTURE WORK 
In 2017, the number of MODIS satellite-

detected forest fre occurrences recorded for the 
conterminous States was the ffth most in 17 full 
years of data collection and the most since 2014. 
Ecoregion sections in the Pacifc Northwest, the 
northern Rocky Mountains, and California had 
the highest forest fre occurrence density per 
100 km2 of forested area. Geographic hot spots 
of high fre occurrence density were detected 
in these same areas, as well as in the Southeast 
and southern Arizona. Ecoregion sections in 
southern, central, and northern California; the 
Cascade Mountains of Oregon and Washington; 
and northern Idaho and northwestern Montana 



experienced greater fre occurrence density 
than normal compared to the previous 16-year 
mean and accounting for variability over time. 
Alaska experienced low fre occurrence densities 
except in one northeastern ecoregion section. 
The Big Island of Hawai‘i experienced a lower 
fre occurrence density than in recent years as a 
result of an ongoing volcanic eruption. 

The results of these geographic analyses 
are intended to offer insights into where fre 
occurrences have been concentrated spatially in 
a given year and compared to previous years, 
but are not intended to quantify the severity of 
a given fre season. Given the limits of MODIS 
active fre detection using 1-km resolution data, 
these products also may underrepresent the 
number of fre occurrences in some ecosystems 
where small and low-intensity fres are 
common, and where high cloud frequency can 
interfere with fre detection. These products can 
also have commission errors. However, these 
high temporal fdelity products currently offer 
the best means for daily monitoring of forest 
fre occurrences. 

Future work related to understanding 
geographic patterns of forest fre occurrences in 
the United States could include a comparison 
of the MODIS detections with those of the 
VIIRS sensor, an analysis of fre occurrence 
detections by forest cover types, an evaluation 
of whether the fre occurrences correspond with 
mapped burned areas, and an assessment of 
the relationships between fre occurrence and 
drought conditions. 

Ecological and forest health impacts 
relating to fre and other abiotic disturbances 
are scale-dependent properties, which in 
turn are affected by management objectives 
(Lundquist and others 2011). Information 
about the concentration of fre occurrences 
may help pinpoint areas of concern for aiding 
management activities and for investigations 
into the ecological and socioeconomic impacts 
of forest fre potentially outside the range of 
historic frequency. 
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