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Abstract

Pest risk maps are an important source of 
decision support when devising strategies to 
minimize introductions of invasive 
organisms and mitigate their impacts. When 
possible management responses to an 
invader include costly or socially sensitive 
activities, decision makers tend to follow a 
more certain (i.e. risk-averse) course of 
action. We present a new mapping technique 
that assesses pest invasion risk from the 
perspective of a risk-averse decision maker. 
We demonstrate the approach by evaluating 
the likelihood that an invasive forest pest 
will be transported to one of the continental 
US states or Canadian provinces in infested 
fi rewood that may be carried by visitors to 
US federal campgrounds. We test the impact 
of the risk aversion assumption using 
distributions of plausible pest arrival 
scenarios generated with a geographically 
explicit model developed from data docu-
menting camper travel across the study area. 
Next, we prioritize regions of high and low 
pest arrival risk via application of two 
stochastic ordering techniques that employ, 

respectively, fi rst- and second-degree 
stochastic dominance rules, the latter of 
which incorporates the notion of risk 
aversion. We then identify regions in the 
study area where incorporating risk aversion 
changes a region’s pest risk value con-
siderably.

While both methods identifi ed similar 
areas of highest and lowest risk, they 
diff ered in how they demarcated moderate-
risk areas. Each method provides a tractable 
way to incorporate decision-making pref-
erences into fi nal risk estimates, and thus 
helps to better align these estimates with 
particular decision-making scenarios about 
an organism of concern. Overall, in -
corporation of risk aversion helps to refi ne 
the set of locations that could be confi dently 
targeted for costly inspections and outreach 
activities.

12.1 Introduction

Management of alien or non-native invasive 
species populations often requires making 
decisions on allocating resources. Th ese 
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include resources for management or 
eradication of recently detected or 
anticipated incursions of new pests. To aid 
in the decision-making process, agencies 
responsible for monitoring and controlling 
invasive species, such as the United States 
Department of Agriculture (USDA) Animal 
and Plant Health Inspection Service (APHIS) 
in the USA (USDA/APHIS, 1999; Lance, 
2003) or the Canadian Food Inspection 
Agency (CFIA) in Canada (CFIA, 2001), 
routinely assess the risk and projected 
impacts of alien organisms on biological 
resources, trade and other economic 
activities (Simberloff , 2005; Venette et al., 
2010; Magarey et al., 2011; Chapters 2, 5 
and 13, this volume). Geographic mapping 
of risks associated with invasive organisms 
is becoming common in these assessments 
(Boender et al., 2007; Magarey et al., 2009; 
Venette et al., 2010; Chapter 14, this 
volume). In general terms, ‘pest risk 
mapping’ can be described as the 
prioritization of geographic domains facing 
the threat of establishment of a non-native 
insect or disease (Koch et al., 2009; 
Yemshanov et al., 2009a; Magarey et al., 
2011). Th e geographic area of concern is 
divided into a set of small spatial units (such 
as a grid of map cells) so each element can be 
prioritized by the potential for the organism 
of concern to become established and cause 
damage to a host resource. Formally, the 
prioritization provides ranking of all spatial 
locations (map elements), which makes this 
task diff erent from other risk assessment 
tasks that just generally distinguish the 
most (or least) risky domains.

Risk maps can use a variety of metrics, 
such as the probability of the pest’s arrival 
(Koch et al., 2009; Yemshanov et al., 2012a) 
or projected resource losses (Borchert et al., 
2007; Yemshanov et al., 2009b), to describe 
the estimated (or perceived) risk of pest 
incursions. Often, the choice of risk metric 
is driven by a manager’s decision objectives. 
For example, if a pest risk map is aimed at 
guiding surveillance and early detection 
then a metric related to the probability of an 
organism’s arrival may be more relevant 
than one that measures the potential impact 
of established populations (Magarey et al., 

2009; Venette et al., 2010). Frequently, the 
measure of risk is translated into an ordinal-
scale variable (a risk rank) which, in turn, is 
applied to all locations in the geographic 
area of interest (Venette et al., 2010; 
Magarey et al., 2011).

Risk assessments are commonly 
undertaken in anticipation that an organism 
will soon arrive in the area of interest, or 
instead, immediately following the fi rst 
detection of a new invader. In either 
situation, knowledge about the likely 
behaviour of the organism in a new 
environment may not be precise and thus 
could lead to ambiguous estimates of the 
pest invasion risk. Consequently, analysts 
tend to depict the risk of invasion in coarse, 
‘high–low’ terms and often cannot assign 
precise meaning to these coarse ranks 
(Andersen et al., 2004; Baker et al., 2005; 
Simberloff , 2005). Th us, the use of imprecise 
data and assumptions leads to considerable 
uncertainty in estimated risk values 
(Andrews et al., 2004; Koch et al., 2009). 
Unfortunately, these uncertainties are not 
always conveyed to the decision makers, 
who rely on the risk estimates as guidance 
for management choices (Koch et al., 2009).

When risk assessments and maps do 
not incorporate or communicate uncertainty, 
this places an extra burden on decision 
makers to address the uncertainty implicitly. 
Subsequently, the decision makers’ per-
ceptions and beliefs may infl uence their 
treat ment of the uncertainty without 
requiring them to feed this information back 
to the analysts who created the assessments 
and maps (Morgan and Henrion, 1990; 
Gigerenzer, 2002). More over, since experts 
(including pest management professionals 
and regulators) tend to misjudge uncertainty 
by a con siderable margin (Kahneman et al., 
1982) this may lead decision makers to be 
overconfi dent in their own interpretations 
of the risk or, alternatively, cause them to be 
unduly sceptical if knowledge about the 
organism seems to be poor. Th erefore, the 
uncertainty associated with the level of 
estimated risk from an invasive organism 
stands as an important decision criterion 
that should be incorporated by the analyst, 
rather than the decision maker, into the 
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species’ risk map (Venette et al., 2010). In 
practice, the uncertainty of risk values, if 
addressed at all, is rarely integrated, and 
instead is usually presented as a separate 
map (Koch et al., 2009; Yemshanov et al., 
2009a), which may further confuse the 
decision makers.

Typically, decision makers and pest 
management professionals responsible for 
managing incursions of unwanted organ-
isms are risk averse: they tend to follow a 
more certain course of action when the 
need to manage invasive pest popu lations 
prompts calls for irreversible or socially 
sensitive actions (Gigerenzer, 2002; Shefrin 
and Belotti, 2007). Risk-averse behaviour 
also occurs as a common response to the 
situation when public calls to eradicate or 
slow the spread of a recently detected 
invader do not allow enough time to collect 
suffi  cient data about the new organism. In 
short, the political pressure to ‘do 
something’ about recently detected pest 
populations creates another incentive to 
follow a cautious strategy. When resources 
for managing pest populations are limited, 
choices with a more certain chance of 
slowing the spread or eradicating new pest 
incursions are more likely to be adopted. 
Notably, government agencies tasked with 
regulating the incursion and spread of 
invasive organisms (such as APHIS in the 
USA or CFIA in Canada), are fundamentally 
risk averse and have resources and legal 
power to minimize risks, even at the cost of 
regulating trade or restricting other related 
economic activities.

In this chapter, we describe a pest-risk-
mapping methodology that helps to combine 
estimates of pest invasion risk and their 
uncertainty in a single metric such that the 
fi nal risk allocation satisfi es a specifi c 
preference of a decision maker tasked with 
the management of an invasive species. In 
particular, we focus on how the technique 
may be used to allocate risk priorities in 
agreement with risk-averse decision-making 
behaviour. Th e approach is illustrated with a 
case study that prioritizes geographical 
locations using imprecise estimates of pest 
arrival rates to a given area generated with a 
stochastic invasion model.

12.2 Methodological Overview

12.2.1 The risk aversion concept

In general, humans tend to place relatively 
low weights on uncertain outcomes and 
relatively high weights on certain outcomes 
when they are making decisions (Kahneman 
and Tversky, 1979; Kahneman et al., 1982). 
Prior economic studies have demonstrated 
risk- and uncertainty-averse decision-
making attitudes in a wide variety of 
investment scenarios (Markowitz, 1952; 
Levy, 1998; Levy and Levy, 2001). Risk 
aversion is not limited to cases that involve 
allocation of investment assets, but also 
applies to the broader case of how humans 
perceive valuable outcomes under uncertain 
conditions. In economic studies, the 
expected utility hypothesis (Arrow, 1971; 
Schoemaker, 1982) has been used to depict 
preferences of individuals with regard to 
uncertain outcomes. Th e expected utility 
hypothesis asserts that rational individuals 
act to maximize their expected utility (i.e. a 
monetary or non-monetary ‘utility’ value 
that the individual attributes to a specifi c 
asset, service, action or an outcome of his or 
her actions). In short, individuals extract 
utility from consuming goods or services 
that can be purchased with their wealth. Th e 
utility value describes the preferences of 
individuals and their expectations with 
regard to uncertain outcomes and is often 
represented as a function of the payoff s (in 
monetary or non-monetary form). For 
example, consider a decision maker who 
faces the choice between two scenarios, one 
with a guaranteed payoff  and one without 
(i.e. an uncertain gamble with the same 
expected payoff  value). In the guaranteed 
scenario, the person receives x units of 
payoff . In the uncertain scenario, there is an 
equal chance of receiving an x + x payoff  or 
x – x. Th e expected payoff  value for both 
scenarios is equal to x. If a decision maker is 
indiff erent to uncertainty around the payoff  
value (so he or she does not make a 
distinction between the guaranteed payoff  
and a gamble with the same expected value), 
his or her preferences are called ‘risk neutral’ 
and the shape of the expected utility 
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function, or EUF (which depicts the utility 
the decision maker expects to receive versus 
the payoff  value) is linear (Fig. 12.1). 
Alternatively, a decision maker may prefer a 
guaranteed payoff  to an uncertain gamble 
with the same expected value, or instead, 
would accept a guaranteed payoff  of less 
than x, rather than accepting the scenario 
with the uncertain payoff  value x. In this 
case his or her preferences are called risk 
averse and the point demarcating the 
decision maker’s perception of the utility of 
a guaranteed payoff  is positioned above the 
utility value of an uncertain scenario (Fig. 
12.1). Th is also implies that the EUF of a 
risk-averse decision maker is generally 
concave in shape. In general, concavity of 
the EUF is one of the most basic defi nitions 
of risk-averse preferences; further discussion 
about risk aversion and concavity of the EUF 
can be found in Arrow (1971) and Levy 
(1998).

Th e notion of risk aversion can be 
embedded in the process of geographical 
mapping of the risk of pest invasion. In our 
case, the concept of payoff  can be thought of 
as analogous to estimating the anticipated 
likelihood of an organism’s arrival (or the 
potential losses if an invasive organism were 
to establish a viable population in a given 
area). Conceptually, the EUF utility value 
(u(x), Fig. 12.1) can be interpreted as 
analogous to a decision-making priority for 
a given payoff  value x (i.e. the likelihood of 
pest arrival or other metric that indicates 
the degree of importance of a particular 
geographical location for the decision 
maker). Clearly, any rational decision maker 
would assign a higher priority to geographical 
locations that have both a higher and a 
more certain likelihood (or anticipated 
impact) of invasion. By adding the notion 
of risk aversion we suggest that pest risk 
assessments should include some sort of 
penalty for uncertain estimates of risk. 
Formally, these assessments (and geo-
graphical mapping procedures) should be 
done from the point of view of a decision 
maker whose EUF is concave (as it follows 
from a general defi nition of risk-averse 

preferences; Arrow, 1971). Ideally, one 
would be able to explicitly defi ne the shape 
of a decision maker’s EUF. However, 
estimating the shape of the EUF in practical 
terms can be problematic given the diverse 
spectrum of decision-making skills and 
perceptions among pest management 
professionals, and the range of goods and 
values at stake in pest management and 
surveillance decisions. Hence, we limit 
our discussions to a generalized case 
where the EUF of a risk-averse decision 
maker is assumed to be increasing and 
concave, but the exact shape of the function 
is unknown.

x
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• u (x)
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Expected utility function (EUF):

EUF of a risk-averse individual
EUF of a risk-neutral individual
Expected utility of a certain 
payoff x for a risk -averse individual
Expected utility of an uncertain 
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payoff x for a risk-neutral individual

•

–

Fig.12.1. The expected utility function (EUF) 
concept. The EUF value can be interpreted as 
analogous to a decision-making priority that 
indicates the degree of importance for the decision 
maker of a particular geographical site that is 
under risk of infestation. Bold line depicts an 
example of a concave EUF that denotes risk-
averse decision-making preferences. The 
concavity condition means that a more certain 
amount of valuables (or degree of importance for 
the decision maker) (u(x)) would always be 
preferred over a less certain choice (u(x  x) with 
the same expected value, x. Dashed line shows an 
example EUF for a risk-neutral decision maker (i.e. 
one who is indifferent between more certain and 
less certain choices with the same expected 
value).
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12.2.2 Assessing risk of pest arrival 
under the notion of risk aversion

Consider the task of prioritizing geographical 
locations in a landscape based on imprecise 
estimates that a pest may arrive at a 
previously non-invaded locale. When a 
decision maker is risk averse (i.e. his or her 
expected utility function is concave), 
accounting for this preference inevitably 
changes the allocation of high and low 
priority domains in the landscape. Further-
more, when there is a range of plausible 
invasion scenarios (such as multiple 
realizations from a stochastic simulation 
model of invasion), one would need to 
prioritize the high (and low) risk domains 
within a set N, each element of which 
represents a distribution of plausible 
invasion outcomes for a location of interest 
(i.e. estimates of pest arrival risk in our case). 

Th e aforementioned problem of map-
ping risks under uncertainty is con ceptually 
close to the problem of identifying ‘effi  cient’ 
portfolio sets in the economic literature 
(Levy, 1998). Originally developed to help 
with cost-eff ective allocations of fi nancial 
assets in volatile markets (Levy, 1998; Götze 
et al., 2008), portfolio allocation techniques 
have proliferated in other disciplines facing 
a similar problem of addressing uncertainty 
in decision making, such as assessing the 
feasibility of farm community programmes 
(Kramer and Pope, 1981), irrigation 
practices (Harris and Mapp, 1986), crop 
selection (Lee et al., 1987), resource 
allocation for effi  cient environmental 
management (McCarthy et al., 2010) and 
surveillance planning to control multiple 
diseases in animal health (Prattley et al., 
2007). In our case, the estimated arrival 
probability of an invasive pest can be seen as 
analogous to the concept of ‘net return’ in 
fi nancial literature, while the uncertainty of 
that probability estimate is, in turn, 
analogous to the concept of ‘volatility’ (cf. 
Arrow, 1971; Elton and Gruber, 1995). In 
our pest-risk-mapping case, each location in 
a landscape can be considered as an 
individual ‘portfolio’ with an associated 
distribution of plausible (i.e. estimated or 
expected) pest arrival estimates. Note that 

in portfolio allocation, the usual objective is 
to narrow down a theoretically infi nite set of 
portfolio combinations to the fewest 
possible choices (‘effi  cient sets’) that have 
the best combinations of expected net 
returns and their volatilities (Elton and 
Gruber, 1995). In our pest-risk-mapping 
scenario, the ‘effi  cient’ set represents the 
combination of the highest estimated pest 
arrival likelihood and the uncertainty of 
those estimates. Since each map element is 
treated as an individual portfolio the total 
number of portfolios is equal to the number 
of elements in the map (so it can be very 
large for high-resolution maps, but still 
fi nite). Th e risk mapping problem can then 
be formulated as a portfolio selection 
strategy: Th e highest-risk locations in the 
map can be delineated by fi nding an ‘effi  cient 
set’ of ‘portfolios’ (individual map elements). 
Importantly, the process of fi nding an 
effi  cient set can be undertaken while 
accounting for risk aversion (Levy, 1992).

12.2.3 Finding ef  cient sets with the 
stochastic ordering techniques

Classical portfolio theory off ers several basic 
techniques to allocate effi  cient sets, such as 
methods employing the concepts of mean-
variance frontier (Markowitz, 1952; Arrow, 
1971), certainty equivalent (Gerber and 
Pafumi, 1998) and stochastic dominance 
(Levy, 1998, Porter, 1978). In this chapter, 
we focus on the non-parametric stochastic 
dominance technique, which does not 
require specifi cation of the shape of the EUF 
or testing the underlying data distributions 
for normality (Fishburn and Vickson, 1978).

Stochastic dominance rule

Th e stochastic dominance rule is a form of 
stochastic ordering that compares a pair of 
distributions. Th e concept was previously 
applied to compare distributions of 
investment portfolio returns in fi nancial 
valuation studies (Hanoch and Levy, 1969; 
Rothschild and Stiglitz, 1970) and shares 
many technical aspects with the partial 
ordering of vectors and majorization theory 
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in statistics (Whitemore and Findlay, 1978; 
Levy, 1992). Th e stochastic dominance rule 
compares two distributions based on their 
cumulative distribution functions, or CDFs 
(Levy, 1998). In our case, we compare two 
map locations, f and g, in a geographical 
setting. At each location, the multitude of 
plausible invasion outcomes is described by 
the distribution, f( ) or g( ), of the rates of 
invasive pest arrival, , at location f or g over 
an interval of possible pest arrival 
probabilities, [a; b], where a = 0 (i.e. the 
probability of pest arrival is zero) and b = 1 
(the arrival of the pest is certain, Fig. 12.2). 
Th e stochastic dominance test compares the 
distributions at f and g as represented by 
their respective cumulative distribution 
functions: ( ) ( )

a
F f d

φ
ϕ ϕ ϕ= ∫  and ( ) ( )

a
G g d

φ
ϕ ϕ ϕ= ∫ . 

Location f dominates g by the fi rst-degree 
stochastic dominance (FSD) rule if:

G( ) – F( )  0 for all , and

G( ) – F( ) > 0 for at least one  (12.1)

Th e FSD rule implies that the CDFs of f and 
g do not cross each other (Fig. 12.2b). Th e 
test for FSD also supposes that a decision 

maker will always prefer the ‘higher value’ 
outcome (Levy, 1998) at any realization of , 
that is, a greater management priority is 
placed on a location with higher likelihood 
of pest arrival (depicted by estimates of ) 
than a location with lower likelihood.

Th e FSD conditions may fail when 
diff erences between G( ) and F( ) are small. 
Alternatively, second-degree stochastic 
dominance (SSD) provides weaker but more 
selective discrimination by comparing the 
integrals of the CDFs for F( ) and G( ): 

( )
a

F d
ϕ

ϕ ϕ∫  and ( )
a

G d
ϕ

ϕ ϕ∫ . Location f dominates 
the alternative g by SSD if:

  for all , and

  for at least one 

   (12.2)

Th e SSD rule implies that the integrals 
of the CDFs for F( ) and G( ) do not cross 
(Fig. 12.2b). Importantly, the SSD condition 
adds the explicit assumption that the 
decision maker is risk averse, that is, the 
dominance relationships based on the SSD 
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Fig. 12.2. First-degree and second-degree stochastic dominance rules. (a) Distributions, f( ) and g( ), of 
camper travel probabilities ( ) at two corresponding map locations, f and g. (b) The cumulative 
distribution functions (CDFs), F( ) and G( ), of f ( ) and g( ) in (a). ‘FSD’ indicates the  rst-degree 
stochastic dominance conditions are satis  ed (i.e. G( ) and F( ) do not cross each other). (c) Two 
additional example distributions of pest arrival rates at f and g. (d) In this case, CDFs of f ( ) and g( ) 
cross each other so that the  rst-degree stochastic dominance conditions fail. (e) The integrals of the 
CDFs. ‘SSD’ indicates the second-degree stochastic dominance conditions are met (i.e. the integrals of 
the CDFs do not cross each other).
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rule (Equation 12.2) satisfy the assumption 
that the decision maker’s EUF is increasing 
and concave (Levy, 1992; Meyer et al., 2005, 
Gasbarro et al., 2009; see more details in 
Levy, 1998 and Levy and Levy, 2001).

Th e SSD and FSD tests are pairwise 
com parisons. However, our pest-risk-
mapping example required that we evaluate 
risk for all map elements constituting a set 
of N multiple geographical locations. In such 
a case, multiple pairwise stochastic domin-
ance tests of map elements can be used to 
delineate a subset of elements, 1, from the 
total set N such that each element of 1 
could not be dominated by any element in 
the rest of the set, N - 1 and the dominance 
conditions fail between the elements within 
the subset 1. Formally, a non-dominant 
subset 1 is equivalent to an ‘effi  cient set’ in 
economic literature (Porter et al., 1973; 
Fishburn and Vickson, 1978; Porter, 1978; 
Post and Versijp, 2007).

Finding nested ef  cient sets

Under classical portfolio theory, allocation 
usually aims to defi ne a single most effi  cient 
set of portfolios (Ingersoll, 1987; Elton and 
Gruber, 1995). A single set is suffi  cient 
because it is assumed that any investment 
amount can be allocated simply in specifi ed 
proportions to the set of portfolios. 
However, allocation of resources according 
to a pest risk map is a more complex exercise, 
and as outlined above, typically requires the 
assessment of every map element. Th is can 
be accomplished by extending the traditional 
methods of fi nding an effi  cient set to a 
nested scenario which undertakes sub-
sequent delineations of nested effi  cient sets 
that identify successively lower risks. After 
the fi rst effi  cient subset 1 is found, it is 
assigned the highest invasion risk rank of 1 
and removed from set N temporarily. Th en, 
the next non-dominant subset is found from 
the rest of the set, N – 1, assigned a risk 
rank of 2, temporarily removed from set N - 

1 and so on. Th e delineation of nested non-
dominant sets continues until all elements 
in the set N are evaluated and assigned a 
corresponding decision-making priority 
rank. Given that the geographical location of 
each map element belonging to any of the 

nested effi  cient sets is known, the 
corresponding priority ranks can be assigned 
to each element, resulting in a map of risk 
ranks. Furthermore, the FSD and SSD 
techniques off er an opportunity to explore 
the impact of the notion of risk aversion on 
fi nal risk delineations via a comparison of 
risk ranks based on the SSD technique 
(which incorporates the notion of risk 
aversion) with the ranks based on the FSD 
rule (which does not specify risk-averse 
preferences explicitly).

12.3 Case Study Example: Assessing 
Risk of Human-mediated Movement 
of Wood-boring Insects in Firewood 
with Recreational Travel in the USA 

and Canada

Th e presented risk allocation technique 
requires that we estimate distributions of 
plausible pest arrival rates for each map 
element. Th ese measures can be generated 
with stochastic invasion models. Stochastic 
models have been widely used for assessing 
risks of ecological invasions (Rafoss, 2003; 
Muirhead et al., 2006; Cook et al., 2007; Pitt 
et al., 2009; Yemshanov et al., 2009a; Prasad 
et al., 2010) and the human-mediated 
movements of invasive organisms (Robinet 
et al., 2009; Carrasco et al., 2010). Here, we 
illustrate our methodology with a case study 
that estimates the probability of wood-
boring forest pests arriving in fi rewood at 
campgrounds on federal lands in the 48 
continental US states (and Washington, DC) 
by travellers from continental USA and 
Canada. Th e potential for accidental, long-
distance transport of alien species with 
recreational travel has become a topic of 
considerable concern in North America 
(Haack et al., 2010; Tobin et al., 2010; Jacobi 
et al., 2011; Koch et al., 2012). Visitors often 
bring untreated fi rewood to parks and 
campgrounds in the USA and Canada, and 
this material has been recognized as a 
signifi cant vector of wood-boring forest 
pests (USDA/APHIS, 2010; Th e Nature 
Conservancy, 2011; Jacobi et al., 2011; CFIA, 
2012). For example, movement of fi rewood 
by campers has been deemed one of the 
major causes of the rapid expansion of 
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populations of the emerald ash borer, an 
invasive pest of ash trees (Fraxinus spp.), 
throughout eastern Canada and the US 
Midwest (Haack et al., 2002, 2010; Kovacs et 
al., 2010). Overall, recreational travel is 
considered a signifi cant vector of fi rewood 
movement. Campground surveys in various 
parts of the USA indicate that 8–57% of 
campers bring their own fi rewood from 
home, frequently travelling distances exceed-
 ing 320 km and crossing state and US–
Canada border lines (USDA/APHIS, 2011).

While the problem of moving forest 
pests with fi rewood is well recognized 
(USDA/APHIS, 2010; Th e Nature Con-
servancy, 2011), data on the movement of 
fi rewood across North America are generally 
lacking. Th erefore, we modelled more 
general travel patterns of campers rather 
than their actual movement of fi rewood and 
analysed a geographically referenced data-
base of campground visits in the USA 
between 2004 and 2009 (including cross-
border visits from Canada). Our primary 
data source was the US National Recreation 
Reservation Service (NRRS), which manages 
reservations for campgrounds at over 2500 
locations that are operated by the US Army 
Corps of Engineers, USDA Forest Service, 
National Park Service and other federal 
agencies (see full description of the NRRS 
database in Koch et al., 2012). Each 
reservation record provided information 
including the name and state of the 
destination campground, reservation date 
and the visitor’s origin ZIP code (or postal 
code for Canadian visitors). Th e NRRS 
dataset provided geographic coordinates for 
the campgrounds, and we assigned geo-
graphic coordinates for each visitor’s home 
ZIP code (or postal code for Canadian 
locations) in the dataset (ESRI, 2009; 
NRCan, 2010). Th ese records were then used 
to build a network of pathways that 
connected sets of origin and destination 
locations across North America (see further 
details in Koch et al., 2012).

12.3.1 Stochastic invasion model

Th e information stored in the NRRS 
database was used to undertake stochastic 

pathway simulations of potential move-
ments of recreational travellers to and from 
campgrounds in the USA, including visits 
from Canada. We assumed that there is a 
predictable relationship between camper 
travel and fi rewood usage (Jacobi et al., 
2011), so the camper travel pattern is a 
proxy for the fi rewood transport pattern.

Th e pathway model is conceptually 
similar to that presented in Yemshanov et al. 
(2012a, b). Using the NRRS data, we 
composed a matrix of n × n origin–
destination locations, where each matrix 
element defi ned the number of visits for a 
particular pair of origin–destination loca-
tions (i.e. the total number of reservations 
between a particular origin ZIP/postal code 
and destination campground). Because the 
original NRRS records encompassed more 
than 500,000 unique spatial locations, we 
aggregated the data to a grid of approximately 
15,000 of 15  15 km cells (so the locations 
within a single 15 km2 cell were merged and 
treated as a single node). Th is aggregation 
decreased the size of the matrix and reduced 
the simulation time. Individual NRRS 
records were aggregated into a set of unique 
pathway segments, each connecting an 
origin map cell, i, and a destination map cell, 
j, in the network. Th e total number of travels 
through each pathway segment ij (based on 
the NRRS reservations) was used to build a 
pathway matrix where each element defi ned 
the rate, pij, of camper movement (and 
by extension, fi rewood-facilitated pest 
transport) from cell i to cell j. Th e pathway 
matrix stored the pij values for all possible 
pairs of (i, j) cells in the transportation 
network in n rows and (n + 1) columns:

 

(12.3)

where the elements 
n

j
ijp

1
1  in the far right 

column describe the probability that no 
camper travel from i to any j occurs. If the 
value of this column is equal to 1 for any 
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matrix row (a relatively rare occurrence), 
then the location i associated with that row 
does not function as a point of origin in the 
model. However, the location may still serve 
as a potential destination j.

Th e pij values were estimated as:

pij = mij  (12.4)

where mij is the total number of reservations 
for the origin–destination vector ij and  is a 
scaling parameter. Ideally, knowing the 
precise value of  would be critical for an 
exact estimate of the pij values. However, our 
study did not require precise estimates of  
because we had the simpler objective of 
ordering all map cells in the dimension of 
high–low relative infestation risk via 
multiple pairwise tests for FSD and SSD (as 
described in Equations 12.1 and 12.2). In 
that sense, our approach is able to generate 
relative risk rankings even in the absence of 
an exact model of the temporal rates of 
transmission. In this case, the value of  
needed only to be suffi  ciently small to keep 
the sums of transmission rate values in the 
Pt matrix rows below 1:

 (12.5)

Th e Pt matrix was then used to generate 
stochastic realizations of potential move-
ments of campers (and by extension, pest-
infested fi rewood) from a given cell i to other 
cells with recreational travel. With i set as 
the point of ‘origin’, the model simulated 
subsequent camper movements from i to 
other destination cells by extracting the 
trans mission probabilities from Pt associ-
ated with i (Fig. 12.3). Th e process continued 
until a selected destination node had no 
outgoing paths or a terminal state was 

chosen based on the elements 
1

1
n

ij
j

p
=

−∑
 

in Pt.

Finally, for each geographic location i, a 
summary transmission probability, ij, was 
estimated from the number of times travel 
from i to another cell j occurred over K 
multiple stochastic model realizations:

ij = Jij/K (12.6)

where Jij is the number of individual pathway 
simulations where travel from i to j was 

simulated to occur, and K is the total number 
of individual pathway simulations (for this 
study, K = 2  106 for each origin location). 
Th e values of ij were estimated for each pair 
of origin–destination cells, requiring a total 
of K [n (n – 1)] pathway simulations.

We should clarify that, while the pij 
values in the Pt matrix and the ij summary 
probabilities both refer to pairs of origin–
destination cells, they represent quite 
diff erent things. Briefl y, each pij value repre-
sents only the probability of travel along a 
particular pathway segment ij, as funda-
mentally derived from the camper 
reservations data. Note that pij is often zero 
because not all (i, j) pairs were connected in 
the underlying data (i.e. many pairs did not 
have any associated reservation records). In 
contrast, the ij values represent the total 
probability of travel from a given location 
i to another location j via any feasible path-
way (i.e. a combination of one or more 
pathway segments). Importantly, this total 
probability includes cases where j was only 
an intermediate destination along a path-
way. Th us, the ij values also incorporate 
possible multi-stop travel as simulated by 
the model.

12.3.2 Ordering the geographical 
locations in the dimension of pest 

arrival risk

We used the transmission probabilities ij 
(which, in relative terms, depict the location-
specifi c potential of invasive pests to be 
moved by recreational travellers) to order 
the map cells across Canada and the USA in 
the dimension of high-to-low risk. We built 
separate maps for each of the 48 continental 
US states (and Washington, DC) and nine 
Canadian provinces (including the Yukon 
Territory). For each potential origin map cell 
i outside a target state or province, k, the 
model generated a list of all destination cells 
within the state (province) of interest to 
which the movement of campers (and, in 
turn, forest pests carried by fi rewood) was 
predicted from i (i.e. where the associated ij 
values were positive). We then rearranged 
the list so that each origin cell i was 

1

1
n

ij
j

p
=

≤∑



226 Denys Yemshanov et al.

characterized by a distribution of the 
transmission probability values ij from that 
location to some destination (i.e. any cell) 
within state (province) k (Fig. 12.3). In 
short, this distribution described the origin 
location’s potential to be the source of 
fi rewood-transported forest pests for the 
state (or province) of interest.

Assuming that the map for each state 
(province) of interest k had nk external 
locations that could potentially serve as 

sources of future pest arrivals with camper 
travel, the analysis produced a total (i.e.

across all k states/provinces) of M = 
1

k

k
k

n
=
∑

distributions of the ij transmission prob-
ability values. We then applied the FSD and 
SSD rules to this superset of distributions so 
that we could order them in the dimension 
of highest-to-lowest risk of transmission 
from i to k. Th us, each cell i was given two 
partial risk ranks based on the fi rst- and 
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Fig. 12.3. Mapping risks that invasive pests may be carried with infested  rewood by campers (the 
analysis summary).
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second-degree stochastic dominance rule, 
rik FSD and rik SSD , of pest movement from 
i to k by campers. Importantly, since partial 
ordering of the distributions of transmission 
probabilities was done in a single superset 
(that included all M sets of outputs 
representing risks of movement to all k 
states/provinces of interest), the fi nal risk 
ranks for diff erent states and provinces can 
be compared one with another.

Our next goal was to compare the ranks 
generated with the FSD and SSD rules and 
to explore how much the risk aversion 
assumption changed the geographical pat-
terns of risk across the study area. Because 
the SSD rule is weaker than FSD and usually 
produces smaller-size effi  cient sets (Porter, 
1978; Post, 2003), the number of nested 
effi  cient sets in the FSD and SSD classifi -
cations can be diff erent. Th erefore, we 
inverted and rescaled the risk ranks rik 
generated by the FSD and SSD techniques to 
a 0–1 range so the rescaled ranks, r`ik FSD and 
r`ik SSD, denoting the highest risks were close 
to 1 and the lowest risks were close to 0. We 
then explored diff erences between the 
rescaled risk ranks generated with the FSD 
and SSD classifi cations as well as their 
variation across the study area.

12.4 Summary of Results: State- and 
Province-wide Risks of Likely Pest 
Transmissions With Recreational 

Travel

12.4.1 Broad geographical patterns or 
pest transmission risk

Th e methodology described above yielded 
distinct maps for every US state and 
Canadian province. Here, we illustrate our 
results using the four representative 
examples of Arkansas, California, Colorado 
and Quebec (Canada) (Fig. 12.4). Th e risk 
maps generated with the SSD rule suggest 
some basic geographic trends in camper 
travel behaviour. First, the highest-risk out-
of-state origin locations (i.e. from where the 
movement of infested fi rewood is the most 
likely) are usually in close proximity to the 
state (or provincial) border or, at longer 

travel distances, are associated with major 
urban centres. In addition, most prominent 
recreational destinations (such as Grand 
Canyon National Park in Arizona) are also 
high-risk locations. Notably, there are 
distinctive regional trends in camper 
behaviour. For instance, interior states in 
the mid-western and south-eastern USA are 
characterized by predominantly local- and 
medium-range travel from surrounding 
areas. While states in these regions have few 
high-profi le recreational destinations such 
as national parks, they have a dense and 
fairly uniform network of campgrounds, 
situated near major water bodies or public 
forest lands, which are used more often by 
casual or short-term campers.

Th e western USA has vast areas of 
sparsely populated land, and so has a higher 
relative proportion of long-distance sources 
of campers (and thus potential fi rewood-
associated pests) than the eastern USA. Th e 
risk of pests being moved by campers return-
ing to Canada is relatively low. However, the 
largest Canadian cities, such as Toronto 
(Ontario), Montreal (Quebec) and Vancouver 
(British Columbia), have relatively high risks 
of being potential sources of infestations in 
neighbouring US states.

12.4.2 Impact of adding the notion of risk 
aversion

Th e general impact of adding risk-averse 
decision preferences can be illustrated using 
a simplifi ed delineation of risk ranks in the 
dimensions of mean transmission proba-
bility, –, and its degree of variation, 
represented by ( ij ), the standard deviation 
of ij (Fig. 12.5). When uncertainty is 
ignored and the assignment of risk classes 
is based solely on the mean probability 
–

ij , broad risk ranks can be defi ned by 
parallel lines at certain constant probability 
thresholds (i.e. the parallel dashed lines in 
Fig. 12.5). Adding the notion of risk aversion 
generally implies that between two 
geographic locations (represented by points 
in Fig. 12.5) with the same expected mean 
probability of the pest’s arrival, the more 
certain choice (i.e. the location with lower 
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variation of ij ) will be assigned a higher 
decision-making priority (in relative terms). 
In turn, the boundaries between risk classes 
under the risk-averse SSD rule (i.e. solid 
lines in Fig. 12.5) will always be tilted at an 
angle, , below 90° relative to their cor-
responding risk-neutral boundaries, since a 
location with the same mean transmission 
probability –ij as another location, but lower 
variability, will receive a higher risk rank 
under SSD.

Th e impact of adding the risk aversion 
assumption also shows discernable geo-
graphical patterns. Figure 12.6 presents 
example maps of diff erences in risk values 
delineated with the FSD and SSD rules, r`ik 
= r`ik FSD – r`ik SSD, for Arkansas, California, 
Colorado and Quebec (Canada). Overall, the 
greatest diff erences between the risk ranks 

based on the FSD and SSD rules were found 
in suburban and rural areas. While both 
FSD- and SSD-based rankings were similar 
for the extreme risk ranks (i.e. above 0.95 or 
below 0.05), for moderate risk ranks 
between 0.05 and 0.95, the two methods 
appeared to place diff ering levels of emphasis 
on certainty in the ij values. Th e ranks 
derived with the SSD rule appeared to be 
lower than the FSD ranks when the variation 
of the pest arrival rates was high. Th is 
tendency was particularly evident in the 
range of moderate and low risk ranks 
between 0.05 and 0.50 (Table 12.1).

In general, the geographical patterns of 
changes between the FSD and SSD rank 
values, r`ik, can be grouped into three 
broad types. Th e fi rst type represents states, 
such as Arkansas, California and Texas, with 

ArkansasCalifornia

r ìk SSD:
< 0.1
0.1–0.3

0.3–0.5

0.5–0.7
0.7–0.9

> 0.9 

Quebec (Canada)Colorado

Fig. 12.4. Examples of risk maps depicting the potential of invasive forest pests to be moved by 
recreational travellers to the states of Arkansas, California and Colorado and the province of Quebec. 
The risk rank values are based on the second-degree stochastic dominance rule (SSD), which 
incorporates risk-averse decision preferences.
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very high volumes of out-of-state recre-
ational visits and subsequently higher risks 
of pest arrival with camper travellers from 
elsewhere. For these states, the high r`ik 
values are uniformly distributed in rural and 
suburban regions across much of the entire 
central and western USA. However, the 
diff erences between the FSD and SSD ranks 
in large urban areas appear to be small (Fig. 
12.6).

Th e second type of geographical pattern 
is represented by the mountain and desert 
states in the western USA (such as Idaho, 
Montana, Nevada, New Mexico, Oregon, 
Utah, Washington and Wyoming), which 
show irregular uniform patterns of r`ik 
values. As exemplifi ed by Colorado (Fig. 
12.6), most of the greatest changes in ranks 
are either associated with large urban areas 
in the central and eastern USA or are 
dispersed across rural and suburban areas in 
neighbouring states in the western USA. 
Th is duality in the geographical distribution 
of changes in rank is probably caused by 
some campers travelling long distances from 

the central and eastern USA and Canada to 
prominent national parks in the western 
USA, as opposed to shorter-distance travel 
for campers from neighbouring states.

Th e third group is represented by states 
in the north-eastern USA (Connecticut, 
Delaware, Maine, Massachusetts, New 
Hamp shire, New Jersey, New York, Rhode 
Island, Vermont), more sparsely populated 
states in the north-central USA (North and 
South Dakota), and the most populous 
Canadian provinces (Alberta, British 
Columbia, Ontario and Quebec). As illus-
trated by the map for Quebec (Fig. 12.6), the 
highest changes in risk ranks were detected 
only in locations close to the state or 
provincial border, or in most prominent 
urban centres in the western USA, such as 
Denver (Colorado), Los Angeles (California), 
Phoenix (Arizona) and San Francisco 
(California).

Th e other Canadian provinces, the 
District of Columbia and Alaska showed 
extremely small changes in the rank values. 
Th e rest of the US states can be characterized 
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Fig. 12.5. Schematic representation of broad risk classes (i.e. classes of the rescaled risk values, r`ik) 
delineated with the SSD rule in dimensions of the mean camper travel probability, –, and its standard 
deviation, ( ij).  denotes the tilt angle between the generalized boundaries of the risk classes in the 
point cloud –

ij – ( ij) and the horizontal line indicates a constant mean transmission rate ( ij = const). 
Dashed lines denote the boundaries between hypothetical risk classes in a risk-neutral classi  cation (i.e. 
 = 0, when risk delineation is independent of the amount of uncertainty in the estimates). Points 

represent individual locations (15  15 km map cells, a 10% random subset of all locations).
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0.5–0.7
0.3–0.5
0.1–0.3

–0.1– 0.1
–0.3  – 0.1

r`ikFSD-rik SSD:

ArkansasCalifornia

Quebec (Canada)Colorado

Fig. 12.6. Maps of rank differences, r`ik = r`ik FSD – r`ik SSD, between the delineations based on  rst- and 
second-degree stochastic dominance for Arkansas, California, Colorado and Quebec (Canada). Positive 
values indicate that the SSD-based risk rank is lower than the FSD-based rank (so adding the notion of 
risk aversion decreases the risk rank). 

Table 12.1. Correspondence between the FSD and SSD rank classes as a percentage of the map area. 
The numbers in the highlighted diagonal show the percentages of the map area where the rank class 
was the same in both FSD and SSD rankings. The largest percentage values in each row are marked in 
bold.

Risk rank based on the 
FSD rule

Risk rank based on the SSD rule

0–0.05 
(lowest) 0.05–0.25 0.25–0.50 0.50–0.75 0.75–0.95

0.95–1 
(highest)

0–0.05 (lowest) 100
0.05–0.25 72.2 27.7 0.1
0.25–0.50 0.7 89.8 7.7 1.8
0.50–0.75 30.5 52.8 15.0 1.7
0.75–0.95 < 0.01 3.5 24.6 71.0 0.9
0.95–1 (highest) 2.6 97.4

by some combination of the geographical 
patterns of high r`ik values described 
above: a relatively uniform distribution 
across rural and suburban areas adjacent to 
the state borders, as well as long-distance 

travel hotspots associated with the largest 
urban centres and most prominent recre-
ational destinations (e.g. national parks 
and national monuments) in the western 
USA.
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12.4.3 Insights for pest management and 
surveillance

Despite their technical complexity, the 
application of stochastic ordering techniques 
represents a step forward in model-based 
assessments of pest invasion risk because it 
off ers the appropriate treatment of un -
certainty according to the specifi c pref-
erences of decision makers, the end users of 
risk assessments and maps. Overall, in -
corpor  ation of risk aversion helps narrow the 
set of geographical locations that would need 
to be targeted for costly or socially sensitive 
biosecurity surveillance and inspection 
activities. Th e methodology off ers a strategy 
for dealing with the typical problem of 
combining a multitude of uncertain 
assessments of pest invasion risk into a one-
dimensional risk estimate and generating 
consistent rankings based on imprecise data. 
In general, coarse risk assessments are the 
result of a lack of know ledge about the 
invasive organism of interest, such that the 
potential outcomes of invasions are assessed 
in vague ‘high–low’ terms, or are represented 
by distributions of plausible invasion 
outcomes. Although experts and pest 
management professionals can identify the 
meaningful trends in the predicted outcomes 
of an invasion, they are rarely able to assign 
precise probabilities of the organ ism’s arrival 
risk or the level of damage it is likely to cause. 
In the stochastic ordering tech nique, each 
geographic location is ordered along a ‘high–
low’ risk gradient by fi nding nested ‘effi  cient’ 
sets, which makes the issue of assigning 
precise values less critical.

It should be noted that the technique 
based on nested non-dominant sets provides 
only a partial ranking (so that ranks refl ect 
relative ‘high–low’ positions only within a 
given dataset). When comparable risk 
rankings need to be developed for multiple 
datasets (as was required in our case for each 
individual US state and Canadian province), 
an extra step is required of aggregating all 
datasets into a single superset which can be 
ranked with the stochastic dominance rule. 
Th e fi nal ranks are then mapped to the 
individual spatial location and their values 
appear within a single frame of reference, so 

the ranks for diff erent states and provinces 
are comparable, one with another. Despite 
its serious computational burden, this 
technique addresses a major criticism of risk 
assessments based on partial ordering: an 
inability to generate a common ranking 
space for multiple datasets.

Furthermore, the ability to generate 
comparable rankings helps provide further 
insights for decision makers tasked with the 
development of nationwide pest regulation 
and surveillance programmes. For example, 
a simple summary comparison of the risk 
that each US state (or Canadian province) 
will receive infested fi rewood with 
recreational travellers can be used for better 
coordination of surveillance and biosecurity 
screening programmes among states and 
provinces. Table 12.2 shows comparative 
risk levels for all US states and Canadian 
provinces, represented in this case by their 
mean rescaled risk estimates, r`ik FSD and 
r`ik SSD. As Table 12.2 suggests, Texas, 
Arkansas and California show the highest 
potential to receive forest pests in camper-
transported fi rewood from elsewhere, 
whereas the District of Columbia, Yukon 
Territory, Nova Scotia, Manitoba and 
Saskatchewan have the lowest potential.

Incorporation of risk-averse preferences 
into the pest risk assessment and mapping 
process has some important implications for 
the development of broad-scale pest sur-
veillance programmes, or alternatively, for 
public outreach campaigns. In regions where 
the locations (i.e. map cells) with high risk 
ranks based on the SSD rule are uniformly 
dispersed in relatively close proximity to a 
state or provincial border, the development 
of large-scale biosurveillance programmes 
could target nearby states because camper 
travel is mostly local and risk is distributed 
uniformly in close proximity to the state 
(or province) of interest. Instead, if the 
majority of high-ranked source locations are 
associated with long-distance travel 
destinations (such as heavily visited national 
parks in western USA), a broad regional 
surveillance pro gramme may be ineffi  cient 
and a substitute strategy targeting these 
prominent high-risk locations would be 
more eff ective.
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Table 12.2. State and provincial summaries based on the mean rank values, r`ik FSD and r`ik SSD.

Country State/province

FSD-based risk rank SSD-based risk rank

Mean r`ik FSD Relative rank Mean r`ik SSD Relative rank

USA Texas 0.283 1 0.202 1
USA Arkansas 0.251 2 0.184 3
USA California 0.246 4 0.202 2
USA Missouri 0.246 3 0.167 4
USA Tennessee 0.226 5 0.157 5
USA Colorado 0.215 6 0.140 7
USA Georgia 0.201 8 0.143 6
USA Florida 0.205 7 0.128 8
USA Illinois 0.197 9 0.121 10
USA Iowa 0.185 10 0.123 9
USA Oklahoma 0.179 11 0.117 11
USA Washington 0.169 12 0.109 15
USA Oregon 0.168 13 0.110 14
USA Arizona 0.161 15 0.115 13
USA Utah 0.151 17 0.116 12
USA Kansas 0.166 14 0.100 17
USA North Carolina 0.150 18 0.101 16
USA Nevada 0.156 16 0.088 20
USA Kentucky 0.142 19 0.095 18
USA Alabama 0.137 21 0.093 19
USA Virginia 0.139 20 0.086 21
USA Pennsylvania 0.132 22 0.085 23
USA South Carolina 0.121 25 0.085 22
USA Idaho 0.127 23 0.081 24
USA Ohio 0.121 24 0.062 27
USA Mississippi 0.119 26 0.072 25
USA New York 0.116 27 0.063 26
USA Louisiana 0.113 29 0.062 28
USA Maryland 0.114 28 0.057 31
USA Indiana 0.111 30 0.058 30
USA West Virginia 0.092 32 0.059 29
USA Minnesota 0.106 31 0.053 33
USA Wisconsin 0.088 33 0.046 34
USA Montana 0.073 38 0.054 32
USA New Mexico 0.082 34 0.039 36
USA Michigan 0.080 35 0.037 38
USA Massachusetts 0.078 36 0.033 39
USA Nebraska 0.073 39 0.039 37
USA New Hampshire 0.067 41 0.044 35
USA New Jersey 0.075 37 0.028 41
Canada British Columbia 0.068 40 0.024 43
USA Wyoming 0.053 44 0.031 40
Canada Quebec 0.062 42 0.020 44
USA South Dakota 0.040 45 0.027 42
USA Connecticut 0.054 43 0.020 45
Canada Alberta 0.028 47 0.012 46
USA Maine 0.027 48 0.012 47
Canada Ontario 0.030 46 0.010 50
USA Vermont 0.024 49 0.010 49
USA North Dakota 0.017 51 0.010 48
USA Delaware 0.023 50 0.008 51
USA Rhode Island 0.016 52 0.006 52
USA Alaska 0.004 53 0.002 53
Canada New Brunswick 0.001 54 0.002 54
Canada Saskatchewan 0.001 55 0.001 55
Canada Manitoba 0.001 56 0.001 56
Canada Nova Scotia <0.001 57 0.001 57
USA District of Columbia <0.001 58 <0.001 58
Canada Yukon Territory <0.001 59 <0.001 59
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In general, risk maps based on SSD-
based ranks can be interpreted in the same 
way as the other pest risk maps that are 
based on direct invasion model outputs 
(such as probabilities of pest arrival, see also 
Venette et al. (2010) and Chapters 3 and 4, 
this volume). Since the SSD-based ranks 
align better with known risk-averse 
preferences among decision makers they 
provide more conservative rankings and 
further improve the utility of pest invasion 
models for decision making. Because the 
SSD-based ranks do account for uncertainty 
(via explicit consideration of CDFs in the 
stochastic dominance tests) they emphasize 
more certainly estimated risk values and 
thus provide a better indication of priorities 
for decision makers. As the ranks based on a 
partial order of elements (i.e. nested effi  cient 
frontiers), the SSD ranks can be used directly 
for prioritization in geographical domain (so 
the locations identifi ed with the highest 
ranks could be visited fi rst, the second 
highest ranks visited second, and so on).

12.4.4 Computational remarks

On a formal basis, the second-degree 
stochastic dominance rule used in this case 
study provides an attractive framework for 
assessing pest invasion risks under 
uncertainty. Th e attractiveness of the SSD 
rule lies in its non-parametric nature 
(Fishburn and Vickson, 1978). Th e SSD rule 
provides a risk-averse delineation (Porter et 
al., 1973; Meyer et al., 2005) without an 
explicit specifi cation of a decision maker’s 
expected utility function (i.e. defi ning a 
numerical ‘utility’, or decision priority, value 
for every possible invasion outcome that a 
decision maker may encounter). In fact, the 
precise determination of the degree of risk 
aversion and other related behavioural 
aspects of decision makers’ preferences is 
problematic as it would require tracking the 
history of decision-making actions within 
the agency responsible for managing pest 
incursions, as well as quantifying the 
associated risk preferences among the 
groups of experts involved in analysing and 
generating major regulatory policies and 

decisions in response to recent pest 
incursions in North America. Note that 
practical applications of the SSD rule still 
require careful consideration of the decision-
making problem of interest.

Th e presented methodology also places 
high importance on the choice of the risk 
metric. In short, the choice of metric may 
change the interpretation of the uncertainty 
associated with the metric’s variation and 
subsequently the nature of risk-averse 
delineations made with the SSD rule. In our 
case study, the probability of pest arrival 
with camper travel was employed as a risk 
metric. Th e use of this sort of metric seems 
well justifi ed if the associated risk map is 
intended to support costly decisions (such 
as setting up inspections and public 
outreach campaigns or imposing a regu-
lation on certain areas). Furthermore, if the 
risk metric (or the ‘utility’ value) takes into 
account costs or is represented in a 
monetary equivalent (cf. Hauser and 
McCarthy, 2009), then the SSD rule could be 
used eff ectively to prioritize cost-eff ective 
management actions in spatially hetero-
geneous environments.

Alternatively, when a risk map is 
intended to assist with early pest surveillance 
(i.e. gathering new information about the 
distribution of a pest), the arrival probability 
value is not suffi  cient to characterize the 
potential information gain from, for 
example, an unexpected detection of the 
pest in a low-probability location. In such a 
case, an alternative metric is required that 
would depict an anticipated increase of 
knowledge about the invasive pest per se as 
a result of planned survey. Possible 
candidates for information gain metrics 
include the utility of a survey eff ort 
(Yemshanov et al., 2010) and the probability 
of pest detection (Cacho and Hester, 2011). 
Furthermore, the information gain can 
be considered as a trade-off  between 
the estimated rate of pest arrival and the 
uncertainty of that estimate, and so the 
prioritization could be done in the two 
dimensions of the arrival rate and its 
variance. Th ese two dimensions could 
be further aggregated into a single-
dimensional information gain metric using 
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various multi-criteria aggregation methods 
(Roy and Bouyssou, 1986) or a multi-
attribute frontier aggregation technique 
(see details in Yemshanov et al., 2013). 
Testing the alternative information gain risk 
metrics and adapting the stochastic 
dominance approach for practical bio-
surveillance scenarios will be the focus of 
our future work.1
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Note

1  Readers who are interested in evaluating the 
approach can  nd a copy of the stochastic 
dominance ranking utility (the software archive 
ssd_utility.zip) and the documentation (SD_
rank_readme.pdf) in the open resources for 
this book, available at http://www.cabi.org/
openresources/43595.
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