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ABSTRACT

Three systems for thinning pine plantations and naturally-regenerated stands were
studied. All three produced small sawlogs and fuel chips. The whole-tree system
consisted of a feller buncher, skidder, stroke processor, loader, and chipper. The cut-
to-length system included a harvester, forwarder, loader, and chipper. A hybrid system
combined a feller buncher, harvester, skidders, loader, and chipper. Time-motion study
data were analyzed to predict cost per unit volume. The cut-to-length system had higher
costs and yielded less fuel than the other systems. In plantations, the hybrid system was
least expensive, while the whole-tree system was cheaper in the natural stands. The
harvesters were capable of handling largertrees in the natural stands, and could remove
limbs from the plantation pines, up to a limit. The cut-to-length system could operate on

the steep and broken terrain included in the study.

Many concerns must be addressed
when implementing ecosystem manage-
ment: maintenance and enhancement of a
diversity of stand structures and plant
species, cycling of nutrients, maintenance
of soil structure, porosity and organic
matter, conservation of habitat for fauna,
reduction of the risk of wildfire, and the
ability to extract forest products.

The whole-tree (WT) methods pres-
ently used in California to harvest small
trees have several potential drawbacks.
They rely on mechanical felling and
bunching and whole tree skidding, and
therefore remove most of the above-
ground biomass to the roadside. Skidder
travel tends to sweep duff and litter from
trails, exposing bare mineral soil to pos-
sible compaction and disturbance, and
skidded loads may damage residual
trees. Past studies have shown higher
damage to smaller trees, which should be
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retained if a diverse stand structure is
desired.

Cut-to-length (CTL) systems may
remedy these problems. Harvesters leave
limbs and tops in the woods, retaining
nutrients and organic matter on the site.
Limbs and tops can be placed on trails to
provide a mat for equipment travel, and
the forwarders used to transport the short
lengths carry the wood off of the ground,

reducing the potential for adverse soil
impacts. The short length of a forwarder
translates into less potential for stand
damage.

CTL systems have potential draw-
backs as well, especially for conditions in
California’s Sierra Nevada region. Har-
vesters may not be able to remove the
larger limbs that are characteristic of
ponderosa pine in open-grown planta-
tions, or to handle the taller trees found
on higher quality sites. Forwarders have
limited slope capabilities and may not be
able to operate on a high percentage of
the Sierran terrain. Less wood fuel is
produced than with a WT system, and
residual fuel loadings are higher than af-
ter WT harvesting.

Several CTL studies have been con-
ducted in North America (e.g.,
2,9,12,15), but only a few in ponderosa
pine. McNeel and Rutherford (11) ob-
served a CTL system logging naturally
regenerated interior west coast stands
that included some ponderosa pine. The
diameter at breast height (DBH) aver-
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TABLE 1. — Stand characteristics.

Plantation Natural stand
Species Pinus ponderosa Abies concolor, Calocedrus decurrens,
Pinus lambertiana, Pinus ponderosa
Average age (range) (yr.) 35 75 (40-100+)
Reserve stand prescription Enhance habitat for spotted owl
Basal area (ft.%/acre) 120 150
Trees/acre 75 120

Other reserv specs

All non-pine trees
Brush islands for habitat

All live trees > 18" DBH
All snags > 16" DBH
Patches of saplings as wildlife screens

Removals

Merchantable
MBF/acre 4.5 3
Trees/acre 75 45
Avg. DBH (in.) 12 13

Biomass (excluding tops)
Type Small trees Small live trees, dead, cull
Pieces/acre 3 95
Avg. DBH (in.) 8 8

aged 9 inches; maximum tree height was
about 60 feet; and slopes were 10 percent
or less. Barbour et al. (1) reported on
harvesters working in fire-origin mixed
conifer stands on the Colville National
Forest in Washington, on gentle terrain
and with small trees (6- to 9-in. average
DBH). None of these indicated how CTL
equipment would perform in conditions®
in the Sierra region: large limbs on plan-
tation ponderosa, trees up to 100 feet tall,
and steep and broken terrain.

Comparative studies of CTL and other
systems have been conducted. Blinn et al.
(3) simulated three hardwood harvesting
systems: chain saw and forwarder CTL,
chain saw and cable skidder tree-length,
and feller/buncher and grapple skidder
tree-length. CTL had the highest present
worth per unit of investment. Holtzscher
and Lanford (8) simulated three CTL
systems for thinning pine plantations;
those with a feller/buncher and processor
or feller/buncher and chain saws were
cheaper than a system with a single-grip
harvester. Three studies compared CTL
and WT systems in eastern Canada. Gin-
gras (5) found CTL costs to be compara-
ble or lower, in areas that required con-
siderable travel between cut blocks. In
contrast, the two other studies found WT
to be 15 to 30 percent cheaper (6,7).
Lanford and Stokes (10) also compared

! The machines evaluated represent classes of equip-
ment. Mention of trade name or model does not
constitute an endorsement of a particular make.
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CTL and WT systems, for thinning
young pine plantations. Although WT
was less expensive during the actual
study, projected costs were essentially
identical for the two systems. It is appar-
ent that comparative performance is de-
pendent on the situation.

To evaluate harvesting systems under
California conditions, we studied three
systems for thinning pine plantations and
naturally regenerated stands on the Stan-
islaus National Forest. Several re-
searchers are investigating soil impacts,
fuel loading, mechanical damage to re-
sidual trees, bark beetle activity, and
long-term stand growth; results will be
reported at a later date. This paper fo-
cuses on harvest costs, product recovery,
and physical feasibility of the harvesting
systems.

-

APPROACH

HARVEST SYSTEMS

All three systems produced small
sawlogs and biomass (fuel) chips. No
sorting of sawlogs was required as all
were delivered to the same mill.

The WT system included a Timbco
T420 feller buncher with shear, Timber-
jack 450B and Caterpillar 528 grapple
skidders, Timberjack 90 stroke delim-
ber/processor, Prentice 610 loader, and
Morbark 60/36 drum chipper.! All trees
were felled in one pass, and the mer-
chantable ones (10 in. DBH) were piled
separately from the biomass. Merchant-
able trees were skidded hot, i.e., with no
separating time buffer, to the processor at

the landing. The processor decked
sawlogs and piled tops for later chipping.
Most limbs were returned to the woods
by the skidders, but larger ones in the
plantation were piled for chipping. After
all sawlogs were loaded out, the chipper
moved in, and the biomass was skidded
to the chipper.

The CTL system included a Timber-
jack 1270 harvester with 762B head,
Timberjack 1010 forwarder, loader, and
chipper. The harvester delimbed and
bucked sawlogs from the merchantable
trees. It also delimbed and bucked the
biomass trees and biomass logs from the
tops of the merchantable trees, down to 2
inches in diameter. The forwarder usu-
ally carried a single product — sawlogs
or biomass logs — in any one load and
cold-decked them separately. Little pre-
pared room was needed for decking or
subsequent loading; material was decked
alongside main trails and roads and in
landings. Chipping required a skidder to
move biomass from the decks.

The hybrid (HYB) system blended
WT and CTL. Merchantable trees were
processed in the stand, but sawlogs and
biomass bunches were skidded rather
than forwarded. In the natural stands, a
Timbco 420 feller buncher cut the
biomass trees. An Equipment Repair
EP200 harvester head on a Timbco T435
carrier then felled merchantable trees,
delimbing and bucking long sawlogs (up
to 33 ft.). It placed unlimbed tops on the
biomass piles left by the feller buncher.
In the plantation, the harvester felled all
the trees because there were few biomass
stems, so the biomass consisted mainly
of tops from merchantable trees. Felling,
sawlog skidding, and biomass skidding
were segregated and carried out in that
order. All material was skidded hot to the
loader or chipper.

STANDS

The systems were tested in two stands,
a 35-year-old ponderosa pine plantation
(40 acres total), and a mixed conifer
stand that had been partially logged by
railroad in the 1940s and had naturally
regenerated (80 acres total). Charac-
teristics of the stands are listed in Table
1, and diameter distributions are dis-
played in Figures 1 and 2. Two replicate
blocks were delineated in each stand
type, and each block was divided into
four units, one assigned at random to
each harvest system. The remaining units
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were designated as controls for environ-
mental impact studies.

The open-grown plantation pines were
mostly under 18 inches DBH, but some
had limbs over 4 inches in diameter, and
the limbs commonly occurred in whorls
of four or five. Large limbs were found
almost down to the stump. Pines in the
natural stands had smaller branches due
to higher stand density.

Harvesting was carried out from May
2 through June 7, 1994. Essentially all
skidding and forwarding was on favor-
able grades, i.e., loaded downhill, and
distances ranged up to 1,000 feet. Slopes
in the plantation were 25 percent or less;
those in the mixed conifer blocks were up
to 40 percent.

DATA COLLECTION

We collected time-motion data on all
stump-to-truck activities. Only data on
operators with one or more years of ex-
perience were included in our analysis.
Productive cycle time elements and other
variables are defined in the Appendix.
For felling, harvesting, and processing,
tree DBH was estimated by eye, as were
travel distances for felling and harvest-
ing. Skidding and forwarding distances
were estimated with prelocated markers.
Numbers of pieces were counted for the

sawlog and chip loads that were time”

studied, and scale volume per load or
weight per van was used to calculate av-
erage log volume or average biomass
piece weight, respectively. Productivity
relationships were developed from the
time-motion cycle data, via regression
analysis. A few productive delays were
calculated on a time per load basis; all
others were estimated as an additional
percentage of productive cycle time and
segregated by system and stand type
where appropriate.

We tallied all removal trees by DBH,
and sampled heights and diameters in
each stand to develop local height-di-
ameter relationships. Estimates of mer-
chantable volume were made with the
diameter tallies, height relationships, and
tree volume equations (16). The weight
of biomass in the non-merchantable trees
and in tops and limbs of the merchant-
able trees were estimated using tabular
data (14). All sawlogs were scaled at the
mill, and weights and moisture contents
of biomass chip vans were recorded.
These data were used to calculate prod-
uct recoveries for the three systems.
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RESULTS AND DISCUSSION

PRODUCT RECOVERY
AND CHARACTERISTICS

Product recovery percentages,
biomass-to-sawlog ratios, and average
sawlog volumes are listed in Table 2.
The CTL system recovered more sawlog
volume than the other systems. This may
be due to the lack of breakage during
forwarding, compared to skidding. The
recovery fractions should be considered
in a relative sense. Some are higher than
one, but this is probably due to ocular
underestimates of diameters and there-
fore volumes of the cut trees. The bias
was considered to be consistent across
the systems.
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There were marked differences be-
tween the three systems in biomass yield,
and the ratio of biomass to sawlogs.
These reflected the CTL system’s re-
moval in the woods of all limbs and tops
from biomass logs, and the hybrid’s re-
moval of limbs from sawlogs. Overall
recovery ratios followed the same trend
as for biomass, although the overall frac-
tions varied less because the low biomass
yields for the CTL system were partially
offset by higher sawlog yields.

CTL sawlogs averaged approximately
half the volume of those for the other
systems due to their shorter lengths. The
larger natural stand trees yielded bigger
logs on average, and the large numbers of
small and dead trees resulted in higher
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Figure 1. — Diameter distribution for the plantation. All trees were alive.
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Figure 2. — Diameter distribution for the natural stand, by type of material.
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TABLE 2. — Product recovery data for the three harvesting systems. ratios of biomass to sawlogs than in the

WT HYB CTL plantation.
Natural stand 1.10 0.95 1.13 .
Plantation 0.80 e 109 To compare economics of the systems,

a standard set of conditions was chosen

Biomass (BDT Fuel Delivered/BDT Residues Cut) f tand A .
Natural stand 0.68 0.63 0.48 or each stand type. Average pieces per
. acre and tree sizes from Table 1 were
Plantation - 072 0.57 0.27 e . .
) ) used. Average skidding/forwarding dis-
Sawlogs + biomass (BDT Delivered/BDT Cut)
tance was set at 400 feet and slope at 15
Natural stand 0.80 072 0.67 . . .
. percent. Harvesting cycle time relation-
Plantation 0.76 0.71 0.60 . . .
. . ships, listed in the Appendix, were de-
Ratio of biomass to sawlogs (BDT/gross MBF) .
veloped for each stump-to-truck activity.
Natural stand 435 5.11 2.57 . s
) Production rates at maximum utilization
Plantation 221 1.89 0.98 . .
A . | BF were calculated from these relationships,
Ve;agt‘::lw ogdv° ume (gross BF) o ] for the biomass component and sawlog
Pla ' stan 8 30 304 component. For hot activities, the num-
antation 36.7 523 270 bers of machines were balanced to give
minimum costs, although each system
was limited to a single processor, loader,
and chipper. Observed average times for
truck travel for a 40-mile one-way haul
including unloading were combined with
predicted loading times to give produc-
TABLE 3. — Machine replacement prices and hourly costs including labor. tive hau_.ing time per load. Observed av-
Machine Purchase price Hourly cost erages were used for truck load volumes
($) ($ /SH)a and Chlp van Welghts
Timbco T420 w/20-in. shear 240,000 70 The machine rate approach (13) was
Timbco T435 w/EP200 harvester 370,000 96 used to calculate hourly costs for each
Timberjack 450B skidder 160,000 58 piece of equipment (Table 3). Key as-
Timberjack 90 processor 270,000 78 sumptions included current replacement
Timberjack 1270 w/762B harvester 460,000 123 costs for equipment (or for current simi-
Timberjack1010 forwarder - 290,000 s .. 86 lar models), 20 percent salvage value, life
Prentice 610 loader 340,000 92 of 5 years, 2,000 scheduled hours per
Prentice 325 loader 200,000 62 year, and maximum utilization rates of
Morbark 60/36 chipper 260,000 89 65 percent. Maintenance and repair per-
Log truck, chip truck 50 centages and supply and expense (S&E)

costs were taken from a study by Brinker
et al. (4), and S&E costs were adjusted
for inflation. A labor rate of $12 per
scheduled hour (SH) was assumed, plus
50 percent loading for benefits and other
labor overhead. For trucking, a flat rate of
$50 per scheduled hour was assumed,
and utilization was set at 90 percent.

4 SH = scheduled hour.

costs and production rates

were combined to give total dollars per

acre for each activity and product. The

costs allocated to the biomass were incre-
mental as much as possible, i.e., felling of
non-merchantable trees, skidding or for- .
warding of biomass, and all chipping and e
[ Fell/Harv chip hauling. The costs of handling tops

by the harvesters, WT skidding oftops on
merchantable trees, and decking of tops

by the WT processor were not easy to
separate and were therefore assigned to

the sawlogs. The total dollars for sawlogs

and for biomass were divided by the total
amount of product to give costs per gross
Figure 3. — Stump-to-mill costs for sawlogs. thousand board feet (MBF) for the
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sawlogs (Fig. 3) and costs per bone dry
ton (BDT) for the biomass (Fig. 4).

In the plantation, the HYB system was
least expensive. The harvester efficiently
felled all material because there were so
few biomass trees. The WT system had
high processing costs, due to the large
limbs, ability to handle only one tree per
cycle, and the considerable time spent
decking large tops for chipping. The
processor was slower than the skidder,
which increased skidding cost. It was less
productive than either of the harvesters.
For WT biomass, chipping limbs accu-
mulated at the landing increased the costs
of chipping and skidding. The CTL har-
vester was more productive than the
HYB harvester, but also more costly per
hour. Forwarding was twice as expensive
as skidding for sawlogs, and several
times as costly for biomass, due to the
smaller CTL piece size. CTL hauling
was more expensive because of the heav-
ier trailer used for the shorter logs.

WT was cheapest in the natural stand.
The processor and chipper were more
productive than in the plantation, de-
creasing the costs for these activities and
for the associated skidding. As in the
plantation and for the same reasons, CTL
was costlier than either the WT or HYB
methods.

Harvesting costs could be reduced.
The loader was oversized; a well-
matched machine is expected to reduce
loading costs by a third. WT chipping
costs in the plantation could be reduced
by skidding all limbs from processing
back into the stand. Harvesters and proc-
essors with higher delimbing forces
might reduce delimbing times for larger
plantation trees. A larger forwarder
would reduce travel distance per unit of
material and speed up travel on the bro-
ken terrain. Balance between the har-
vester and forwarder could be obtained
by working the least productive of the
two for more hours. A lighter short log
trailer would reduce hauling costs for the
CTL logs, and setout trailers would
eliminate the loader cost, at some addi-
tional forwarding cost if the forwarder
was more limiting than the harvester.

PHYSICAL LIMITATIONS

WT. — The feller bunchers and the
skidders were able to negotiate the ter-
rain on all the study units. With the ex-
ception of a single 20-inch DBH tree,
bole diameter and tree weight did not
exceed the feller buncher’s limits. Al-

FOREST PRODUCTS JOURNAL

75 1

$/BDT

M Hau
Chip

B Reskid
Skid/Fwd

[ Fell/Harv

W,
Plantation
HYB,
Plantation
CIL,
Plantation

WT, Natural

CTL, Natural

Figure 4. — Stump-to-mill costs for biomass fuel.

though the stroke delimber was slow in
the plantation, it removed all limbs with-
out obvious delays or difficulty and with
essentially no damage to the boles.

CTL. — Terrain was not too steep or
broken for forwarding on any of the CTL
units, but slopes over 10 percent did re-
quire trails that were directly downhill,
resulting in longer travel distances than
with skidding on similar terrain. The ob-
served forwarding slope extremes while
loaded were: 42 percent downhill, 23
percent uphill with a full load, and 35
percent uphill with half a load.

No trees designated for harvest in the
CTL units were too large for the har-
vester; the largest green trees were 18
inches DBH, and the largest snag was 25
inches DBH. The harvester could easily
remove limbs up to 2.0 inches in diame-
ter; multiple strokes were required for
larger limbs, and those over 2.5 inches
could not be removed. On a large-scale
operation, a chain-saw operator might
fell and delimb the trees with oversized
limbs, working ahead of the harvester.

HYB. — The feller buncher, harvester,
and skidders were able to negotiate the
terrain on all units, and tree size did not
pose aproblem. The EP 200 head is capa-
ble of cutting trees up to 24 inches at the
butt. By chance, the largest limbs found
on the study were in one of the HYB
plantation units. The EP 200 head was
able to remove limbs smaller than 4.5
inches in diameter, using multiple
strokes on the larger ones, but the aggres-
sive feed roll teeth caused some degrade
to the bole wood.
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SUMMARY AND CONCLUSIONS

In the natural stands, with their wider
range of tree sizes and smaller branches,
the WT system was least expensive be-
cause it handled fewer pieces from stump
to landing and efficiently processed the
naturally pruned trees. All delimbing was
slower in the large-branched ponderosa
pine plantations, but both harvesters
were relatively more efficient than the
stroke processor. The lower cost of proc-
essing with the harvester made the HYB
system the least expensive in the planta-
tion. The CTL system had the highest
cost in both stand types, because of mul-
tiple handling of small pieces. Cost, how-
ever, is only one element of harvest sys-
tem selection.

Questions about the physical feasibil-
ity of CTL equipment were answered.
The Timberjack harvester could handle
the largest trees encountered in the natu-
ral stands; some of these were 18 inches
DBH and 100 feet tall. The largest limbs
on plantation ponderosa pine could not
be removed. The Timbco 435 with EP
200 harvester head could remove larger
branches, but was slower than the Tim-
berjack. For trees from older plantations,
a chain saw or a more robust harvester
will be required. The forwarder was able
to operate on the steeper slopes and on
broken terrain. These promising results
indicate that CTL systems may be feasi-
ble in much of California, although care-
ful layout will be required on steeper
sites.
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APPENDIX. HARVESTING PRODUCTIVITY RELATIONSHIPS

For each piece of equipment, cycle time elements and other variables are defined, then statistics and regression relationships are
tabulated. For variables where only mean differences were significant, standard deviations are reported in the 7 column in the

relationships tables.

Table Al. — Feller/buncher, harvester, and processor variable deﬁni't"i:ons. ‘

Cycle (centiminutes (cmin)) Time per accumulation of trees in the head = Move X MoveFrac + Fell

Move (cmin)

Time spent moving without a tree in the head

Dist (ft.) Straight line distance traveled
Slope (%) Fall line slope
MoveFrac Fraction of cycles which include a Move
Fell (cmin) Time to fell all trees in the accumulation, including moving with trees
DBH (in.) Diameter at breast height of each tree
Trees Number of trees and other pieces in the accumulation
Dead 1 = dead tree (snag), 0 = other material
Hybrid 1 = hybrid system, 0 = other system
TimePerTree (min.) = Cycle x (1 + DelayFrac)/Trees/100
Harvester differences
Cycle (cmin) Time per tree = Move X MoveFrac + Fell + Process
Fell (cmin) Time to fell a tree until it hits the ground, including moving with the tree
Process (cmin) Time to delimb and buck, including placing the top in a biomass pile
Sawlogs Number of sawlogs cut from a tree
Biologs Number of biomass pieces cut from a tree
Plant 1 = plantation, 0 = natural stand

TimePerTree (min.)

= Cycle x (1 + DelayFrac)/100

Time per processor grapple load = Process + MoveTops X MoveTopsFrac
Time to delimb and buck a grapple load, including decking sawlogs

Processor differences
Cycle (cmin)
Process (cmin)
Stems Number of stems grappled
MoveTops (cmin) Time to pile tops for chipping
MoveTopsFrac Fraction of cycles which include a MoveTops

TimePerTree (min.)

= Cycle X (1 + DelayFrac)/Stems/100

64
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