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Sawing of hardwood logs still relies on relatively simple technologies that, in spite of their
lack of sophistication, have been successful for many years due to wood’s traditional low
cost and ready availability. These characteristics of the hardwood resource have changed
dramatically over the past 20 years, however, forcing wood processors to become more
efficient in their operations. In spite of some recent advances, the breakdown of hardwood
logs into lumber continues to be hampered by the inability of sawyers to “see” inside of the
log prior to making irreversible cutting decisions. The need for noninvasive assessment of
hardwood logs prior to breakdown is well accepted, but is difficult to realize because
industrial scanning. in this context, is unique in several respects. For example, large volumes
of material must be inspected quickly over an extended duty cycle, the wood material still
possesses relatively low value compared to other industrial materials that require internal
scanning, and many wood processors are small operations located in rural areas. Successful
implementation of new scanning technology, however, will have tremendous payback for
wood processors. and for timber resource conservation efforts. The research program
reviewed here applies a three-pronged approach to address this situation. First, a relatively
new and innovative CT scanning technology is being developed that can scan hardwood logs
at industrial speeds. Second. machine vision software has been created that can interpret
scanned images rapidly and with high accuracy. Third, we have developed 3-D rendering
and analysis techniques that will enable sawyers to apply image assessment to actual log
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breakdown. This integrative research direction combines hardware and software systems to
scan logs, process images, and apply imaging to real-time, industrial decision-making.

Keywords: Computed tomography; Wood utilization; Log scanning;
Automated processing

INTRODUCTION

The manufacture of furniture, cabinets, flooring, millwork, and
molding, along with hardwood exports, accounts for most of the high-
and medium-grade hardwood lumber consumption in the US [1]. In
contrast to softwood lumber, which is valued in terms of volume and
mechanical strength, the value of hardwood lumber is based more
heavily on appearance-related criteria. The conversion of hardwood
trees into final commercial products involves a number of steps (Fig. 1).
First, tree-length material is “bucked” into logs in the forest; these
logs are subsequently converted to lumber in sawmills. For the most

FIGURE 1  The hardwood processing industry consists of 4 segmented processing
stages: log bucking, sawmills, dimension mills and manufacturing plants.
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part, only “clear wood” (defect-free) portions of each board can be used
in finished products; therefore, dimension mills cut, chop, and mould
the wood into small usable parts of pre-determined dimensional sizes.
In the final step, these parts are glued, assembled, and painted/stained
to produce the desired finished wood products. Although processing
integration is reviewed in the last section, the remainder of this paper
focuses primarily on processing of logs into lumber (often called pri-
mary processing).

In a typical hardwood sawmill, logs enter the mill and go through a
de-barking process (Fig. 2). Following this operation, they go to the
headrig where a sawyer moves the log repeatedly past a saw to remove
boards one at a time. As more of a log’s interior is exposed with the
removal of each board, the sawyer may re-orient the log periodically to
cut from the best side, or to restrict a log’s defects to the minimum
number of boards (or the edges of those boards). Sawn boards go
through subsequent operations of edging and trimming, where defects
near the edges and/or ends of the boards are removed to increase each
board’s grade, and therefore its commercial value. The cant (the center
section of the log, which appears rectangular in cross-section),
remaining from initial breakdown, may either (1) enter a resawing
operation where additional boards are cut, or (2) be sold intact for use
in low-value products, such as pallet material. Cant material is of,
generally, low value because (1) many of a tree’s branches begin there,
giving rise to knots in the wood, (2) it contains the tree’s pith, which is
composed entirely of soft tissue, (3) fungal infection from the roots

FIGURE 2  A typical sawmill contains debarking, log sawing. edging/trimming and
grading/sorting operations.
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often results in decay spreading vertically up through the tree’s core,
and (4) the enter of a log has greater curvature in each annual ring,
which produces much greater drying stresses in the resulting boards.

Because the value of hardwood lumber is heavily dependent on the
quantity, type, and location of defects, each log must be sawn to
minimize (subject to board sizing constraints) the number, size, and
severity of defects in the resulting boards. During hardwood log
breakdown, profit-critical decisions are made by the sawyer that can
significantly affect downstream processing operations. This observa-
tion suggests that targeting sawlog breakdown improvements can
drastically increase lumber value recovery. Traditionally, the sawyer
chooses a sawing strategy by visually examining the exterior of the log,
modifying the strategy as sawing exposes the log interior. The sawyer
uses log shape, external indicators of internal defects, and knowledge of
lumber grades to make sawing decisions. While sawyers are highly
skilled in this task, studies [2–4] have shown that the lumber value of
logs can be improved 20% or more by carefully selecting the proper
sawing strategy. However, the current level of information available
to sawyers during the log breakdown operation is inadequate for
enhancing the sawyer’s capability to produce high-value boards.
Developing nondestructive sensing and analysis methods that can
accurately detect and characterize interior defects is critical to future
efficiency improvements for sawmills [5].

Because most defects of interest are internal, a nondestructive sen-
sing technique is needed that can provide a 3-D view of a log’s interior.
Several different sensing methods have been tried, including nuclear
magnetic resonance [6], ultrasound [7] and X-rays [8–13]. Due to its
efficiency, resolution, and widespread application in medicine, X-ray
computed tomography (CT) has received extensive testing for round-
wood applications [11,13–17]. An X-ray CT scanner produces image
“slices” that capture many details of a log’s internal structure (Fig. 3).
Because X-ray attenuation is linearly related to wood density [18] and
many wood features (including defects) exhibit density differences [19],
many lumber-quality defects (e.g., knots, voids and decay) are apparent
in CT images.

While economic analyses suggest that lumber value gains can offset
scanning costs [20,21], there are several technological hurdles that must
be overcome for the application of computer tomography scanning to
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FIGURE 3  This 512 × 512 black cherry CT image depicts the density variation pos-
sible in tomographs.

sawlogs. First, one must determine what characteristics are required
from an industrial scanner in order to adequately image logs with
variation in size and species. In addition, spatial resolution require-
ments and levels of image contrast will vary between logs. Second, there
must be a way to condense the tremendous amounts of data that are
generated by CT imaging, so that only information critical for decision-
making is retained for downstream processing. Finally, the CT data
need to be visualized in a way that conveys their spatial nature and that
is natural for the sawyer to understand [22]. These issues constitute our
three-pronged research program; each is reviewed in the following
sections.

CT IMAGING OF HARDWOOD LOGS

Several capabilities are essential for application of CT imaging in
hardwood sawmills [22]. These include the ability to scan large diam-
eter logs, to provide relatively high-resolution images, to perform scans
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quickly, and to scan logs for long production shifts. Although medical
CT systems would appear to be easy to adapt to log scanning, it is,
unfortunately, the case that current medical CT systems have been
engineered for low frequency, short duration use. This is incompatible
with industrial sawmill needs. Direct application of existing medical
scanning technology would be, in most cases, prohibitively expensive
and slow. Rather, an industrial CT scanner needs to be used. Never-
theless, most existing industrial CT scanners are designed for quality
control inspections in off-line situations, or on-line where materials are
relatively small and of limited mass (e.g., airline baggage inspection).
Industrial scanning of large-volume and -mass objects (e.g., logs)
in an on-line operation demands that we investigate alternative CT
technologies.

Existing CT Technology

Current CT scanner technology includes four types of scanner systems,
referred to as “generations”. They are of two basic types: (1) parallel
and (2) fan X-ray beam scanners. There are two types of parallel X-ray
beam scanners: first- and second-generation systems. Also, there are
two types of fan X-ray beam scanners: third- and fourth-generation
systems. The following subsections briefly describe each one and
identify known strengths and weaknesses.

First-generation Scanners

First-generation CT scanners use a single X-ray detector (Fig. 4(a)). A
pencil X-ray beam is formed by the X-ray source and the detector. This
X-ray beam is traversed over the scanned object to measure the X-ray
intensities through parallel paths in the object. A complete set of such
measurements is made through the entire extent of the object (from one
edge to the other edge). After each such complete set of measurements,
the object is rotated by a small angle (typically by 1° between views)
and the parallel measurement process is repeated. Scanning is con-
tinued until measurements have been made through 180° of view
angles.

First-generation systems possess a number of strengths owing to
their design simplicity. These include: (1) low expense, (2) simple data
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FIGURE 4  First (a), second (b), third (c) and fourth-generation (d) CT geometries
are shown. In each case, the detectors are perpendicular to the axis of rotation, so that
scanning creates an axial tomograph.
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collection scheme because of the one detector, (3) parallel X-ray beam
data collection requires relatively simple algorithms to reconstruct
tomographs, (4) no multiple-detector mismatches that often lead to
image noise, and (5) any size object can be scanned by adjusting the
traverse length of the pencil X-ray beam. Despite their advantages,
however, first-generation CT scanners are prohibitively slow for most
applications where time is a critical parameter, therefore, they are
almost never used.

Second-generation Scanners

Second-generation CT scanners use a detector system (array) consist-
ing of several X-ray detectors (Fig. 4(b)). The X-ray detectors form
independent pencil beams – at slightly different angles – with the X-
ray source. The detector system makes simultaneous measurements
through different angles in a single traverse. After a set of these
simultaneous measurements through the entire extent of the object, the
object is rotated by the array beam’s angle and the measurement pro-
cess is repeated again until the sequence of rotation and transversal
collects 180° data.

Second-generation systems possess most of the advantages of first-
generation systems, including simple geometry and data collection
scheme, easy reconstruction algorithms, and unlimited object sizes. In
addition, multiple detectors can collect data simultaneously, so fewer
traverses are required. Second-generation systems also suffer from
excessive down time needed for mechanical operations, multiple image
traverses, and single-slice data collection. Furthermore, the following
disadvantages also exist. First, several detectors are used to collect the
data for a single tomograph, which means that there can be, and
usually are, variations between the response of various detectors. Even
following software corrections, a small amount of additional noise is
added to the data, resulting in a small loss of image quality. Second,
small artifacts appear in reconstructed CT images due to small mis-
matches in the data from various detectors. Third, to collect a complete
set of data through all angles in the object, the inside edge of the X-ray
fan beam must touch the outer surface of the object at the beginning, as
well, at the end of each traverse. Hence, a significant amount of useless
data is collected at the beginning and end of each traverse.
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Third-generation Scanners

Third-generation CT scanners use a detector array with many detectors.
The detectors are usually located on an arc focused at the X-ray source
(Fig. 4(c)). In this case, data are collected in a fanning movement, rather
than parallel. A sufficient number of detectors are used so that the fan
shaped X-ray beam covers the entire object. The object (or source-
detector pair) is rotated to collect the entire CT data. For 180° data, the
object is rotated by 180° (plus the X-ray beam fan angle).

Third-generation systems offer several advantages over parallel-beam
systems. First, data are simultaneoulsy collected through the entire
object for each view. Second, the mechanical motion of the gantry is
very simple rotational movement. Third, motions are continuous and
hence no time is wasted in mechanical starting and stopping. Fourth,
scan times are quite fast due to non-stop rotational motion and many
detectors collecting simultaneous data.

At the same time, however, third-generation systems have numerous
drawbacks, including the limitation of single-slice data collection. First,
the maximum object diameter is limited by the number of detectors.
Second, scanner resolution is fixed by the number and spacing of detec-
tors covering the object. Third, data from all detectors are always col-
lected. Hence, a significant amount of useless data is collected when
smaller size objects are scanned. Fourth, each detector views a tangent
to a fixed circle within the scanned object, causing circular artifacts in
images. Fifth, system cost is high because it requires a large number of
detectors to ensure coverage of large objects (without translational
movement – as in second-generation scanners – a sufficient number of
detectors must be installed to image the largest object).

Fourth-generation Scanners

Fourth-generation CT scanners use a detector system (array) with an
even larger number of detectors. The detectors are located in a circle,
which surrounds the X-ray source, and the object to be scanned
(Fig. 4(d)). Because the detector array forms a circle, this system requires
the greatest number of detectors. The X-ray source is located between
the detector circle and the object, and is rotated in a circle to collect 180°
or 360° data.
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Because of their similar geometry third- and fourth-generation sys-
tems share both advantages and disadvantages. Advantages include:
data are collected simultaneously through the entire object for each
view, motions are continuous, mechanical motion is simple (only the
X-ray source is rotated), and scan times are fast. Limitations are: the
X-ray fan beam limits object size, scanning small objects results in
much useless data collection, and a single slice is collected at a time. In
addition, fourth-generation systems possess a very high system cost due
to the large number of detectors required to cover the entire detector
circle. Due to high cost, fourth-generation systems are rarely used for
industrial applications (except where inspection failure losses are sub-
stantial, e.g. airport baggage explosive detection) and are becoming
uncommon even in the medical industry.

Tangential Scanning Technology

Scanner Design and Operation

To overcome many of these limitations with traditional CT technology,
we have examined the feasibility of using tangential scanning for
hardwood logs [23]. In tangential scanning, the detector array is placed
parallel to the axis of rotation of the object and perpendicular to the
cross-section [24]. A fan shaped X-ray beam is formed by the X-ray
source and the detector array and extends along the axis of rotation of
the object (Fig. 5).

For data collection, the object is rotated rapidly around it’s own axis.
Simultaneously, the object (or source-detector movement) slowly tra-
verses through the X-ray fan beam in a direction perpendicular to the
fan beam. At the beginning of data collection, the outside surface of the
object touches the X-ray fan beam. For a data set covering 180° of
views, the object is traversed from its one edge to its center. For a 360°
data set, the object is traversed from one edge to the other edge by the
X-ray beam (or equivalently, the specimen translates).

As the object translates through the X-ray beam. the detectors collect
X-ray intensity data along tangential paths of varying diameter circles.
For most of the X-ray beam, each detector collects data for one cross-
sectional slice of the object. In addition, only one detector collects the
entire data for one cross-sectional CT slice. As one moves toward the
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FIGURE 5  Tangential scanning geometry differs drastically from traditional scan-
ners, wherein the specimen rotates and translates simultaneously and the detector array
is parallel to the axis of rotation.

edges of the fan beam (along the s-axis of the log), however, multiple
detectors collect data for a slice. For these edge slices, a 3-D-recon-
struction algorithm will be needed to generate reliable tomographs. All
detectors of the detector array simultaneously collect data to scan an
entire sub-volume of the object. The number and spacing of detectors
determine how many tomographs (and their pitch) can be collected
simultaneously.

Tangential Scanning Strengths and Weaknesses

For industrial applications, the improved geometry of tangential
scanning provides some important advantages over existing scanning
geometries.

1. Tangential scanning is a true, volume CT scanner system which
simultaneously collects data for an entire volume of an object. Data
for many cross-sectional slices are simultaneously collected.

2. Tangential scanning has all the image quality advantages of a single-
detector system because most tomographs are generated using data
from a single detector.
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3. Scanning speeds are even faster than third- and fourth-generation
systems, because only the minimum amount of data is collected for
an object of any size, and no time is lost in waiting for slice-to-slice
movement or start/stop mechanics.

4. Data sets with any number of rays and views can be collected by
changing the data collection rate, by adjusting rotation and trans-
lation speeds. This allows the system to achieve any desired geo-
metrical resolution. The number of rays through the object is equal
to the number of rotations during data collection. The number of
rays through the object can be increased to achieve better spatial
resolution, or they can be decreased to reduce scan time. Thus, the
tangential system can collect data as if it has any (variable) number
of detectors. Similarly, the number of views through the object is
equal to the number of data points collected during a single rota-
tion, i.e., the number of times per rotation that detector counts are
recorded. Again, it can be increased for better spatial resolution or
decreased for better scan time. Thus, the tangential system can
collect data as if it has any number of views.

5. Extremely simple mechanical motions simplify the system’s mecha-
nical design and improve overall system reliability.

The only currently obvious limitations to tangential scanning are the
unavailability of fast and effective reconstruction algorithms and the
fixed pitch of cross-sectional tomographs (limited by detector width
and spacing). Improved reconstruction algorithms are under develop-
ment, however. Detector spacing can be fixed at a relatively small
distance (currently 8 mm), and then particular detectors (every other
detector, every third, etc.) can be read to obtain the desired pitch.

Scanner Prototype

An experimental apparatus has been designed and fabricated to collect
data from logs up to 40 cm in diameter and 60 cm in length. This
included a mechanical gantry with simultaneous translation and rota-
tion of the log, a 128-channel detector array, a 300 kV X-ray generation
system, fan beam X-ray collimation, and data collection, data analysis
and image display software. A photograph of the apparatus appears in
Fig. 6. More details of the apparatus and its operation can be found
elsewhere [23].
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FIGURE 6  This photograph shows a bench prototype of a tangential scanner with      
a log section resting vertically on a turntable. which translates forward and back.          
A detector array is mounted vertically on the left, and the X-ray tube is mounted on     
the right. 

 In a typical experiment, the log rotates continuously with a rota-
tional period of about 10 s per rotation. The linear period of the system
is set to about 3200 s per m. Due to the belt-driven mechanics of the 
current system, there are significant variations in both the translational 
and rotational speeds. Nevertheless, this apparatus allows us to collect 
1024 X-ray angular views per rotation and 3 rays per centimeter 
through the log during a typical tangential scan. Data collection is 
started manually and collects one line of data (128 readings – one from 
each detector) for each trigger pulse received from the encoder of the 
rotary motion. As the computer receives the data, it makes in-line offset 
and gain corrections on each reading for each detector before storing
the data. 
 A typical tangential scan with 40 cm translation (360°) of the log 
through the X-ray beam produces approximately 32 MB of data.  
Other, larger data sets have also been collected using a slower motion of    
the translate stage, which generated more rays per centimeter. Filtered 
backprojection was performed on an individual detector to reconstruct 
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FIGURE 7  A CT reconstructed image of a log allows identification of heartwood 
and a knot. 

an individual CT slice. An example CT reconstructed image from a slice
of a softwood log appears in Fig. 7. 
 Despite demonstrated feasibility, the current prototype requires
improvement before a full-scale prototype can be designed. First, direct 
drive systems for rotation and translation will contribute to improved 
speed and accuracy. Second, for a CT system used in log scanning, the 
current 1024 views is excessive and leads to more data than is really
needed. We want to reduce the number of views to 600, which is an 
excellent number of angular views for a CT system with about 200 rays.
Third, to counter the energy intensity drift of the current X-ray tube, it 
will be necessary to design, fabricate, and install a high-performance,
low-noise single-channel X-ray detector, which can continuously 
measure the intensity of the X-ray tube. These reference detector 
measurements can then be used to correct the entire data set to elim-
inate the effect of the X-ray intensity drifts. Fourth, existing software 
needs to be extended to pre-process individual detector sinogram data, 
to filter sinograms to prepare for filtered backprojection, and improve 
backprojection of filtered sinogram data to reconstruct individual CT 
images. 
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The unique geometric design of tangential scanning provides cross-
generational advantages without some of the inherent limitations, and
permits collection of multiple slices simultaneously. These character-
istics make it particularly effective for high-throughput, large-volume
industrial inspection of hardwood logs. While this research program
continues to extend tangential CT technology, we are also actively
developing software to automatically locate and label internal features
of logs from tomographs. This allows us to greatly condense the large
amounts of CT data generated and to distill out the essential char-
acteristics of logs to make processing decisions.

AUTOMATED INTERPRETATION OF CT IMAGERY

Generating CT images produces tremendous amounts of data. For
example, depending on resolution and frequency of scans, the scan of a
single 4-meter log may result in 20–800 MB or more of image data.
Obviously, it is unrealistic to expect anyone to gain much insight into
the 3-D appearance of an entire log by viewing a sequence of 2-D CT
images. Fortunately, CT data contain a large amount of redundancy,
which can be exploited to condense the data into a form that is more
manageable and usable.

Only those internal features of a log that are important for sub-
sequent processing need to be identified. These features are the defect
areas within a log. Each density-related defect is relatively contiguous
and each such defect type is fairly homogeneous with respect to density.
Consequently, over the past 15 years researchers have begun to develop
automated methods to interpret CT images [11,14,19,25–30]. Once
different internal log defects can be automatically detected then it
becomes a relatively straightforward task to integrate those views into a
3-D rendering of the log.

While previous efforts have demonstrated feasibility, serious lim-
itations remain. First, reports of defect labeling accuracy are either
anecdotal, based on success in a training set, or based on a single test
set. Except for [25,27,28], no statistically valid estimates of labeling
accuracy can be found in the literature. This makes it difficult to con-
trast the efficacy of competing approaches and to determine whether
any particular approach can be used effectively in real-time scanning
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applications, Second, there has been no effort to assess or to achieve
real-time operability of the developed algorithms. There seems to be a
tacit assumption that computer hardware speed will eventually permit
real-time execution of algorithms containing arbitrary complexity.
Third, texture information (spatially contiguous and varying image
elements), which is critical for human differentiation of regions in CT
images (i.e., image segmentation), has been used for region labeling
only [31].

Machine Vision Approach

The defect detection algorithm that we have developed [25,27,28]
overcomes these three limitations. It consists of three parts: (1) a pre-
processing module, (2) an artificial neural-net (ANN) based segmen-
tation and classification module, and (3) a post-processing module. The
pre-processing step separates wood from background (air) and internal
voids, and normalizes density values. The segmentation-classifier labels
each non-background pixel of a CT slice using histogram-normalized
values from a 3 × 3 × 3 or 5 × 5 window about the classified pixel.
Morphological operations are performed during post-processing to
remove spurious misclassifications.

Pre-processing

Background removal, which separates the wood region (foreground)
from the background and internal voids, is the first objective of the pre-
processing module. This step eliminates portions of the image from
further analysis and, in turn, simplifies the classification procedure
and decreases classification time. Background thresholding can be
accomplished either statically or dynamically. This research applies
Otsu’s dynamic thresholding method [32]. Otsu’s method works very
well for bimodal histograms, but does poorly when histograms are
multi-model. Because some log image histograms are multi-model, we
have had to weight the histogram values before applying Ostu’s
method [28].

Normalizing CT image values is the second step of the pre-processing
module. Because different species and different logs vary in density,
somewhat different ranges of CT values can result. Histogram
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normalization translates the original CT image values into new values
without disturbing the invariant associations that internal log features
have with particular regions of the CT histogram. These associations
seem to be, in our experience, consistent across many different species
of logs in the green state (i.e., freshly cut).

ANN Segmentation/Classification

An ANN classifier is the core part of this classification system. Feed-
forward back-propagation neural networks were chosen because their
documented effectiveness for pattern-matching problems, and their
relative ease of use. Using an ANN, each non-background pixel is
labeled. We have constructed both 2-D (5 × 5) and 3-D (3 × 3 × 3)
ANN classifiers, each with a single hidden layer and with a l-of-N
output layer containing log feature types: clear wood, bark, voids,
knots, decay and splits. Input layers contain the normalized pixel
values for the target pixel’s local neighborhood (either 27 or 25 ele-
ments, one per neighborhood pixel) plus one additional element that
contains the radial distance of the target pixel to the center of the log
(Fig. 8). One of our primary research objectives was to determine if
local texture information (augmented with some contextual informa-
tion, radial distance) could be used to classify images.

FIGURE 8  The layout of our artificial neural network classifier depicts the source of
input nodes, the hidden layer and classifier output.
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Based on prior results [25], a single hidden layer containing 12 nodes
is used. The numbers of output nodes for the ANNs differ, however.
For example, red oak classifiers detect five classes: clear wood, knots,
bark, splits and decay. Our yellow poplar samples, on the other hand
do not contain decay, but do contain sapwood, which is different in
density than heartwood for this species, and yet both (sapwood and
heartwood) are clear wood components. In 2-D classifiers, the topol-
ogy is 26-12-5 or 26-12-6, which means that the structure of the neural
network has 26 input nodes, 12 hidden nodes, and 5 or 6 output nodes.
In 3-D classifiers, the topology is 28-12-5 or 28-12-6, which has a
similar interpretation.

Post-processing

Because classification features are based primarily on local neighbor-
hoods, spurious misclassifications tend to occur at isolated points. A
post-processing module is used to remove these small regions, and
therefore improve overall system performance. After passing an image
through an ANN classifier, a CT image is labeled and treated as a gray-
level image. Then the image is post-processed by the morphological
operations of erosion followed by dilation using a 5-point structuring
element. Splits are delicate features and, if post-processed, are often
deleted by the erosion operation. Hence, for all classifiers in our study,
an entire image is not post-processed, but only the outer regions of the
log, because splits tend to lie near the log center. This approach deletes
misclassified small areas – which occur mostly near the outer edges of
the log – and yet retains important information (like splits) near the
center of the log.

Defect Recognition Accuracy

An entire training/testing set for one hardwood species consists of
approximately 1000 samples across multiple images. Ten-fold cross
validation was used to evaluate the accuracy of each classifier. This
means that a training set is randomly divided into 10 mutually exclusive
test partitions of approximately equal size. For each of the 10 stages of
training, one partition is designated as the test set, and the remaining
samples in other partitions are used to train the neural network. In
successive stages, different partitions are used for testing and the
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remaining samples are used for training. The average classification
accuracy over all 10 stages of training is reported as the cross-validated
classification accuracy.

All the ANNs were trained using the delta rule. Based on Li’s results
[25], a small learning rate 0.1 and a medium momentum term 0.6 were
selected as the learning parameters for all ANNs. Random values were
assigned to the initial weights for each network training session.

Using 10-fold cross-validation we developed individual classifiers for
each species – red oak, yellow poplar, and cherry – using both 2-D and
3-D feature vectors (6 classifiers). Image pixels were nominally
(2.5 mm)³ resolution. We also developed multiple-species classifiers:
pairing two species at a time and combining all three species together.
These were also trained using 2-D and 3-D feature vectors for a total of
eight multiple-species classifiers. Finally, finer resolution cherry images
(0.95 mm)³ were used to train both a 2-D and 3-D classifier. Classifi-
cation accuracies appear in Fig. 9.

The accuracy of all six single-species classifiers is above 95%. Six,
two-species classifiers have also been trained using both 2-D and 3-D
image data. Their accuracy is 90–97%. Finally, combined three-species
classifiers (red oak, yellow poplar and cherry) were generated for
2-D and 3-D analysis. These two classifiers identified six kinds of

FIGURE 9  2-D and 3-D classifier accuracies are plotted for each of the ANN
classifiers – red oak (RO), cherry (CH), yellow poplar (YP), 512 × 512 cherry
(CH_512) cherry/red oak (CH_RO), cherry/yellow poplar (CH_YP), red oak/yellow
poplar (RO_YP) and all 3 species combined (COMB).
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defects: clear wood, knot, bark, split, decay and yellow-poplar
sapwood. Their accuracy is about 91–92%. All of these classifica-
tion accuracies are prior to post-processing. Visual assessments indi-
cate that post-processing operations improve accuracy even further
Fig. 10.

Defect Labeling Generality

By training classifiers with different species and with different pixel
neighborhoods, we were able to investigate the interaction of
neighborhood shape (2-D vs. 3-D) and single- vs. multiple-species
classifiers, with respect to their impact on classifier accuracy. The issue
that we sought to resolve here is whether we could develop species-
independent classifiers of high accuracy using our ANN, local-
neighborhood approach.

Therefore, the results in Fig. 9 were examined statistically. This type
of analysis is possible because each estimate of classification accuracy
is an average of 10 sample estimates for the individual cross-validation
partitions. We used Analysis of Variance along with post-hoc T-tests to
answer questions on the impact of neighborhood shape (2-D vs. 3-D)
and classifier cardinality (single- vs. multiple-species) on classification
accuracy. In our first statistical test, we found a significant interaction
between shape and cardinality. This interaction can be seen in the
average classification rates of Fig. 9, where 2-D rates are generally
higher for single-species classifiers and 3-D rates are generally higher
for multiple-species classifiers. In a second statistical test, we found that
differences existed among the set of single-species classification rates,
and also among the set of multiple-species classification rates. In both
cases, the rates for 2-D and 3-D neighborhood differed statistically.

In a final test, we excluded classifiers based on both cherry and yellow
poplar data and performed our original ANOVA again. The fine
resolution (0.95 mm)’ cherry classifier (CH_512) was also excluded. As
before, we blocked the ANOVA on shape (2-D and 3-D). The resulting
F-ratio value for cardinality indicates that there is no difference
between single- and multiple-species classification rates when cherry/
yellow poplar combinations are removed.

We have formed two significant generalizations from these results.
First, when comparing single-species classifiers and multiple-species
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classifiers, the performance of the former is better than that of the latter
when cherry–yellow poplar combinations are used. On the other hand,
when those combinations are excluded, there is no significant difference
between classification accuracy for single- and multiple-species classi-
fiers. Second, when comparing 2-D and 3-D features, the performance
of 2-D single-species classifiers is better than that of 3-D single-species
classifiers. The performance of 3-D multiple-species classifiers is better
than that of 2-D multiple-species classifiers. We conjecture that for
accurate classification in single-species classification, multiple-image
planes contain redundant data that may be unimportant, or even
counter-productive. For multiple-species classification, however, the
extra information contained in adjacent CT slices seems to aid feature
labeling. Consequently, as we increase the species mix that a classifier
must deal with, it appears that 3-D features are important for attaining
high accuracy.

This segmentation/classification technique is able to label an entire
CT image (containing 64K pixels) in l–2 s. In addition, our results to
date indicate that it can be trained to work for any species with a
statistically valid accuracy rate of 95–98% at the pixel level [25,28].
After this defect detection algorithm is applied to each CT image for a
log, slice-by-slice data regarding each defect and the log perimeter can
then be used to generate “glass log” images. These images can be viewed
by a sawyer prior to log breakdown or can be used to evaluate alter-
native sawing patterns in software.

APPLICATION OF NDE INFORMATION

The current work of improving yield from hardwood processing using
an integrated approach is predicated on the availability of internal
imaging information. With such information available, it is feasible
with current technology to model the log through all of its processing
steps – not just log breakdown. A internal log model can be fed back
and incorporated into decision-making during log breakdown, edging
and trimming, grading and sorting, drying, cross-cutting and ripping,
matching and gluing, and eventual end-use manufacturing [33]. The log
model used is a solid model that supports Boolean operations to mimic
various processing operations [34].
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Currently, the application of NDE information is focused on the
primary processing activities occurring in the sawmill, including log
breakdown and board edging and trimming. However, in the not-too-
distant future, we foresee this work being extended to the downstream
operations of cross-cutting and ripping in the roughmill to produce
dimension parts. It also appears that this idea could be extended
to earlier log processing stages, log bucking and topping decisions
(Fig. 1). Due to the inherently interrelated nature of hardwood log
processing, all of these manufacturing steps can be integrated for
optimal results. The following sections describe some of the work that
has resulted from the application of NDE information in hardwood
log processing.

Data Reduction

One of the constraints in modeling, rendering, and processing infor-
mation derived from NDE imaging is dealing with huge data sets.
Even after background removal and labeling, the data remain large,
approximately 8–10 MB per log. In a previous study, for example, red
oak logs measuring 10–12 feet (2.5–3 m) in length were scanned every
quarter-inch (6.35 mm) to detect the occurrence of internal defect
information [35]. The significant cross-sectional changes in a log pro-
file, however, do not occur in small increments of several millimeters,
but rather over a range of several centimeters. Likewise, each cross-
sectional log profile contains more data points than may be necessary
to adequately describe its shape. To represent a log profile then, it is
possible to distill the significant data and not have to carry the over-
head of a massive data set. For defect profile representation, the same
applies, but at the quarter-inch scale.

To speed up processing and better manage the data, it is desirable
to reduce the data to a minimum set that still retains critical shape
information. A computer model called GDR (for Geometric Data
Reduction) has been developed that reliably reduces a log’s data set to a
more manageable size (~ 600 KB) while preserving the representational
integrity of the geometric information. The model essentially eliminates
slice data (in a recursive fashion) which do not exhibit unique cen-
troidal displacement or size characteristics within a threshold value.
Figure 11 shows a comparison of a log before and after processing by
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GDR. The reduction ratio for the figure is 0.142, which is equivalent to
a 59% reduction in the number of slices for only a 0.03% reduction in
solid volume [36].

Log Sawing Simulation

After data reduction, the geometric information is converted into a
polyhedral solid model of the log and its defects [37]. A polyhedral solid
model not only approximates the true shape of the log and its defects
more closely than previous models (e.g. [38]), but also provides a
more robust model that includes both geometric and topological
properties, and enables manipulation through regularized Boolean
operations.

Introduction of a polyhedral solid modeling approach for hard-
wood log and defect representation facilitated the development of
an interactive graphics-based sawing simulator. The sawing simula-
tion program called GRASP (for GRAphic Sawing Program) is a
microcomputer-based graphics program that enables simulated sawing
of solid representations of a log with embedded defects [34].

GRASP has all the attributes of a computer-aided design (CAD)
graphics modeler, such as window viewing, hidden line redering, spatial
transformations, and geometric calculations, making it a powerful tool
for sawing simulation. It is flexible enough to use in any sawing opera-
tion, from log bucking, topping, log breakdown, quartering, veneering,
to edging, trimming, secondary processing, even extracting and repre-
senting furniture components.

As an NDE application, the simulator can be used to view the log
both as an opaque, as well as a transparent, container for defects,
simply by hidden-line removal rendering. Figure 12 shows a quarter-
sawn solid log representation.

Log Processing Integration

The integrated approach we are taking is grounded in the fundamental
philosophy of integration. The basic premise of integration is that some
decisions are interrelated, and thus these decisions should not be made
separately in isolation [5]. Examples of potential candidates for inte-
gration can be found at different stages of hardwood processing [33].
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FIGURE 12  Hidden-line removal rendering produces the typical view of a log solid.

Take, for example, the interaction between the sawyer and the edger
operator. When the sawyer removes a flitch (a board containing wane,
i.e. bark on its edges) from a log face, there is an expectation of a
potential grade for that face. This expectation, however, is not com-
municated as information to the edger operator who may remove too
much or too little wane, resulting in a different board grade from that
which the sawyer intended.

Another example, on a different scale, is an end-use manufacturer
who may need a 3-inch (7.62 cm) thick piece of wood as a furniture
component. To arrive at this dimension from a batch of l-inch
(2.54 cm) lumber or dimension stock, the manufacturer has to match
and glue together several pieces. From an integrated viewpoint, this
dimension requirement can be communicated as information to the
sawyer who will then saw a 3-inch (7.62cm) thick flitch for this
manufacturer and save a few intermediate steps.

The hardwood industry is quite segmented, with each segment
usually concerned only with its immediate input (supplier) and output
(customer). As such, a sawmill converts logs to lumber for the sec-
ondary market, which in turn converts lumber to dimension stock, then
ultimately to the furniture manufacturer, panel manufacturer, and
other end users. This segmentation is deeply rooted in the current
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market structure. Our integrated approach runs counter to this market
segmentation, capitalizing on inherent product interrelationships to
develop products at a lower cost with less waste. Earlier work directed
at examining direct log-to-dimension manufacturing [39], and more
recently, work on direct log-to-furniture manufacturing [40] are
examples of integrated approaches.

NDE facilitates the integration of hardwood processing by providing
a common basis for decision-making. When internal defects are
exposed at the very start of manufacturing, it gives downstream pro-
cesses an entirely new spin. Knowing the type of internal defects and
their distribution and orientation inside a log significantly affect the
sawing pattern, expected lumber sizes, intermediate processing steps,
and ultimately the grading valuation. With log NDE, more informa-
tion becomes available. The challenge is how to effectively use the
information to one’s advantage.

Log Breakdown Analysis

Traditionally, log breakdown follows a few sawing patterns: live saw-
ing, grade or around sawing, cant sawing, taper sawing. Usually a
sawmill adopts one of these sawing patterns and uses it consistently on
most of its logs. With additional information available through NDE,
regarding internal defect configurations, it is conceivable for logs
with different defect configurations to be subjected to different sawing
patterns on a case by case basis [33]. One early computer model
designed to deal with this defect-specific approach was PDIM (Pattern
Directed Inference Model) which generates a log breakdown pattern
specific to the internal defect configuration found inside the log [4l].
It accomplishes this by enveloping the defects in a defect hull and
analyzing a composite end-view that represents an aggregation of the
defects’ distribution through the log. The automated decision-making
was driven by the shape of the hull, and density numbers that reflected
the defect concentration along the length of the log. Designed to be a
generative process planning model, PDIM generates sawing instruc-
tions that could be used to direct a numerically-controlled sawing
headrig and log carriage. This model, along with other similar models,
is being investigated for effectiveness in arriving at computer-generated
optimal sawing patterns.
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In a pilot study involving three log grades of varying quality (grades
#1, #2 and #3, with #1 being the highest quality), six sawing heuristics
were applied in both, defect information-limited (traditional) and
information-augmented (with NDE) scenarios [42]. The six heuristics
were obtained from popular sawing practice as reported by Malcolm
[43]. Preliminary results indicate that in the absence of an optimal log
breakdown procedure, increased information about internal log fea-
tures can improve value recovery by 8.5% for grade #1 logs. Lumber
values for lower grades did not change significantly, which suggests
that choosing a breakdown pattern with high recovery becomes very
difficult when viewing logs with many defects. A follow-up study
involving a larger sample of logs is underway.

CONCLUSIONS AND DISCUSSION

The application of NDE methodology to hardwood log sawing is a
challenging research problem for several reasons. First, tremendous
amounts of data are generated for each unit (log) that is imaged.
Therefore, an important focus of our image-analysis work has been
data reduction – condensing CT imagery data down to defect and log
profiles. Further, our approach also reduces the number of profiles that
must be processed during simulated sawing and 3-D rendering. Second,
the eventual application of this technology requires real-time, in-line
NDE and data processing. Sawmill profit margins are relatively small
and cannot support additional log handling and sorting required for
off-line operations. Third, wood possesses tremendous internal hetero-
geneity and biological variability, both across and within species. Data
processing software must be robust and dynamic to deal with this
variability. Finally, the technology being developed is at this stage
both complex and expensive, which runs counter to the generally less
sophisticated and lower-capitalized, hardwood processing industry.

Nevertheless, significant progress has occurred in all three areas
described above: scanning technology, image analysis and data utiliza-
tion. Work continues on the tangential scanning bench prototype and
on automated defect detection, which will be extended to additional
species and enhanced by better post-processing methods. A full-scale
prototype is contingent on a future support from the private sector.
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In the meantime, simulated log sawing training software is currently
being developed with industry support. It utilizes the software devel-
oped previously for data reduction, log sawing and log breakdown
analysis. The trainer will allow sawyers to practice sawing logs in a
realistic environment with feedback on performance. Presently,
sawyers destructively improve their sawing skills using a mill’s
inventory, and profits.

Current sawing heuristics applied by sawyers are based on externally
visible log characters and those defects exposed during sawing. These
heuristics eventually need to evolve as internal scanning becomes
operational. We are studying the impact that viewing a rendered 3-D
glass log will have on those traditional heuristics, and additionally, we
are developing new heuristics to incorporate internal information [42].

The ultimate goal of this research program is to develop the scientific
and technological foundation that is needed to make operational NDE
practical for sawmills. Hardwood inventories (raw materials) and the
sawmilling business environment are changing. Raw material avail-
ability and quality are decreasing and cost is increasing, while lumber
prices (salable product) are relatively stable. The resulting small profit
margins in the hardwood sawmilling industry mean that even small
increments in value recovery translate into large percentage increases in
profits. While the technology being developed is not inexpensive, it will
become necessary for sawmills of the future.
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