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Abstract-The research reported in this paper explores a
non-destructive testing application of x-ray computed tomog-
raphy (CT) in the forest products industry.  This application
involves a computer vision system that uses CT to locate and
identify internal defects in hardwood logs.  The knowledge of
log defects is critical in deciding whether to veneer or to saw
up a log, and how to position a log so that the boards sawn
from it will have as much clear face as possible.  To apply CT
to these problems requires efficient and robust computer vision
methods.  This paper addresses one aspect of the problem of
creating such a computer vision system, i.e., the issue of effi-
cient image filtering for suppressing unwanted detail in CT log
images.  In particular, this paper describes an image filtering
method based on a spatial adaptive least square filter.  Sim-
ple in structure and efficient in computation, this filter is not
based on assumptions about a signal model, but rather on a
fixed filtering structure.  In conjunction with image segmenta-
tion and region growing procedures, the new filter is used in
the machine vision system to produce well defined regions that
represent areas of potential wood defects.

Index Terms-computed tomography, wood defects, adap-
tive image filtering, computer vision.

I.  Introduction

X-ray radiation passing through an object travels in a
straight line, and is attenuated by the structure within the
object.  Some characteristics of this structure can be inferred
from the way it attenuates radiation.  The attenuation caused
by each small volume of space that lie along the radiation's
path can be represented as a linear equation whose variables
represent the linear absorption of these volumes.  The constant
in this linear equation is the amount of radiation measured at a
detector.  A non-destructive way to infer the structure of an ob-
ject as is characterized by x-ray attenuation is to determine the
linear absorption of each of the small volumes comprising the
object.  If one illuminates these volumes from many different
directions, recording the amount of radiation detected along
many straight line paths, the result can be expressed as a set
of simultaneous linear equations.  If enough directions are used
and enough recordings are taken the resulting set can be solved
to yield the linear absorption of each small volume within the
object.

The above represents the basis for x-ray computed tomog-
raphy (CT).  To simplify the calculations CT machines usually

move the source and detector around in a plane, recording meas-
urements at preselected locations.  The simplification that re-
sults is that one need only be concerned with the small volumes
that intersect the plane.  This markedly reduces the number of
variables in the linear equations and, hence, markedly reduces
the computational complexity of the "reconstruction" process.
This "slice" shows the internal structure of the object along this
intersection of this object with the "imaging" plane.  The first
application of CT was in medicine [1].  More recently the tech-
nique has been used in other nonmedical environments such as
geological prospecting for minerals [2], three-dimensional imag-
ing with electron microscopy [3], and cross-sectional imaging
for nondestructive testing [4].  The impact of CT in radiol-
ogy, diagnostic medicine and non-destructive testing has been
revolutionary.

The research reported in this paper explores a non-
destructive testing application for CT.  This application in-
volves using CT to locate and identify internal defects in hard-
wood logs.  There are two good reasons for wanting to locate
and identify  internal defects in logs.  The first decision that
must be made about a log is whether to saw it into lumber
or to veneer it.  Assuming the log is worth | dollars as a saw
log, a log of the same dimension would be worth 10| dollars
as veneer log.  For example an 8 feet long walnut saw log is
worth approximately $800.  An 8 feet long walnut veneer log is
worth $8,000.  Hence it is very important that one be able to
accurately decide whether a log is of high quality and, hence,
should be veneered, or that it is of lower quality and should be
sawn into lumber.  To accurately make this decision requires
information about the location and identity of internal defects
within the log.

If a decision is made to saw a log into lumber, the next
decision that must be made is how to buck the log, i.e., how
to position it, so that the boards sawn from the log are of the
highest possible grade.  Studies [5] have shown that the value
of lumber sawn from a log can be increased from seven up to
twenty-one percent if optimum positioning is used during the
saw up.  The optimum positioning depends on the location and
identification of internal log defects.  The basic goal of the saw
up is to create boards that have as much clear face as possible.

Given the current high cost of medical CT units, the eco-
nomic viability of using these systems on forest products appli-
cations must be a concern.  However, there is every reason to
believe that the cost of CT machines will go down markedly in
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the future.  First a significant percentage of the total cost of CT
machine is the cost of the computer and special purpose hard-
ware used to do the reconstruction.  Intel Corporation estimates
that a bench mark microprocessor in the year 2000 will be able
to execute 2 billion instructions per second.  If this is true the
special purpose hardware and minicomputer used on today’s
machines will be replaced by one or more microprocessors in
the future.  The cost of one or more microprocessors should be
significantly less than the digital hardware used in today’s CT
machines.  Another significant cost component in today’s units
is the research and development (R&D) cost.  A relatively high
volume market, such as the one that would be associated with
the forest products application, should allow R&D costs to be
spread over more machines reducing this cost on a per machine
basis.  Finally, the spatial resolution required for either of the
above forest products applications will probably be less than
that required for medical diagnosis.  The reduction in spatial
resolution affects not only the computational complexity of the
reconstruction but also the nature of the radiation source.  The
lower the resolution the less expensive the computational hard-
ware and the less expensive the radiation source.

If CT is to be used to attack the above stated problems,
the analysis of CT imagery is going to have to be done by
computer.  This paper explores one aspect of the problem of
creating a computer vision system that uses CT data to locate
and identify interred defects in logs.  In particular, this paper
addresses the issue of efficient CT image filtering for suppress-
ing unwanted detail such as the annual rings in the CT images
of hardwood logs.  By incorporating the 3-dimensional corre-
lation information among image pixels, an improved adaptive
algorithm for image filtering is presented.  Analysis and experi-
ments demonstrate its superior filtering performance over some
other methods.

II.  Problem Background

Removing unwanted image details from images can be an
essential step toward successful image interpretation.  Like im-
ages in other vision system applications, hardwood log CT im-
ages contain some unwanted image details.  In particular the
annual ring structure tends to adversely affect the whole im-
age analysis task.  For instance, Fig.1 shows one example of
the log CT image (a) and a profile image (b) demonstrating
a well pronounced variation in its gray values in the horizon-
tal direction.  Without any preprocesing such as filtering or
smoothing, segmentation will produce artifacts that are caused
by the annual rings on the image slice.  Fig.1 (d) illustrates
one segmentation example of an CT image that is not filtered.
Note the artifacts caused by the annual ring structure.

Therefore, an important problem in CT log image proc-
essing is how to get rid of these unwanted annual rings while
preserving other important image details, e.g., the presence of

small checks.  The annual rings of a log comprise the high fre-
quence signal component in the log images.  Statistically, these
annual rings behave like high frequence noise.  The most com-
mon way of removing high frequence noise from digital images is
to use filters such as a lowpass filter.  Most of current image fil-
tering or smoothing methods fall into two basic categories: (1)
model-driven or optimal methods such as Wiener and Kalman
filters, and (2) heuristic or adaptive methods such as the adap-
tive algorithms [6], median filters, and gradient inverse smooth-
ing [7].  The model-driven methods assume a particular signal
model, making their effectiveness heavily depend on the valid-
ity of a particular signal model used.  The heuristic methods
perform nonlinear smoothing or order-filtering in the spatial
domain.  Such filters are easy to implement and are typically
computationally simple.  Unser [8] has proposed an adaptive
least-squares filtering structure for image restoration in which
no assumption is made about the underlying signal model.  By
locally optimizing a least squares error criterion, this adaptive
filter recursively computes an image estimate from a weighted
sum of the observed noisy image and of the output of an initial
2-d linear restoration filter.

Several of these image filtering techniques, including the
3-r filter, median filter, and 2-d spatial adaptive filter, have
been tested on the CT log images, and the general results are
not satisfactory since they all produce severe artifacts during
image segmentation.  Fig.2 (b) and Fig.3 (b) are the segmented
images after image filtering using two such filters.  In each of
these segmented images, there exist artifacts in the clear wood
regions.

To improve the performance of image sequence filtering, a
modified version of Unser’s method was developed that employs
the 3-dimensional correlation information among pixels on con-
secutive slices in a sequence of images.  Application of this
modified filter structure to CT images has demonstrated that
this filter gives improved performance over the other filters that
have been tried.  In comparison with the original 2-dimensional
algorithm and other non-adaptive filtering methods, this adap-
tive algorithm has the advantage of better preserving spatially
structured details inside an object, e.g., fine edges (like splits)
and textured regions (like knots), while filtering out the un-
wanted detail (like annual rings ) from the image.  The next
section will first describe the properties of Unser’s filter.  It will
then present modifications that have been made to this filter to
extend it to 3-dimensions.  In the context of CT image sequence
analysis, these modifications allow the spatial interdependence
that exist among consecutive images to be incorporated into a
3-d linear adaptive filter.  This filter requires no a priori knowl-
edge of image properties.  In this 3-d algorithm, the first- and
second-order adjacencies of pixels are employed to capture the
spatial interdependence among these points.
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III.  Image Filtering by A Spatial Filter

For nonlinear smoothing of digital images, Lee's adaptive
filter [6] is particularly efficient.  It computes a weighted sum
of the noisy image and of the output of a moving averaging fil-
ter that provides an estimate of the local image average value.
However, this approach assumes that the image noise is un-
correlated Gaussian, and that the image is locally ergodic and
stationary so that local statistics can be used to estimate en-
semble features.  Unser's method, on the other hand, adaptively
computes a linear combination between a noisy image and a re-
stored version of it obtained by an initial filtering.  The purpose
of this procedure is to improve image restoration performance
by using a rather simple structure.  In contrast with previ-
ous work, this approach is based on a filter of fixed structure
rather than on simplified assumptions about a signal model.
Simulation and experiment examples indicate that it is capa-
ble of reducing noise efficiently while preserving image details.
Apparently, image filtering or smoothing using this procedure
depends heavily on the structure of the initial filter.

As in most cases, the observed image signal |i,j consists of
two decorrelated components:  true signal ui,j and corrupting
noise ni,j with known variance r2 (or a variance estimated
from data).  This can be expressed as

(1)

Filtering or smoothing is adopted to improve the signal-
to-noise ratio at most points of the image.  However, in regions
of heavy edges or texture, filtering may degrade the image more
than it actually reduces noise.  In this case, a compromise would
be not to do any filtering on the data.  On the other hand, for
non-textured or non-edged areas, we may want to filter them
using some kind of filter.  Accordingly, to obtain an optimal
estimate of the true image signal at point (i,j), zi,j, a weighted
sum of the noisy signal, |i,j, and its filtered version, yi,j, is
constructed as [8]

(2)

with

(3)

where yi,j is a filtered version of noisy image by a linear opera-
tion.  I and J are the dimensions of a 2-d image window, and NR

the number of pixels in the window.  Note that ai,j and bi,j are
the coefficients that are to be adjusted so that (1) for textured
regions, the noisy observation |i,j is kept by downweighting
the filtered signal yi,j; (2) for non-textured regions, the filtered
signal yi,j is kept by downweighting the noisy observation |i,j.

In general, the filter structure discussed above works fine
for 2-d images and outperforms some of the other image filter-
ing or smoothing methods.  In [8] the initial filter was imple-
mented as a simple moving averaging filter, and the output yi,j

at point (i,j) from the initial filter was an average of the pixels
in a 2-d window centered at that point.  However this spatial
LS method did not consider the important problem of how to
choose the initial restoration filter for specific applications.  Re-
search indicated that it suffered from excessive edge smoothing
and texture blurring when applied to CT images.  For the CT
log images discussed here, this 2-d method would smooth out
some of the fine details such as checks and splits for instance,
Fig.3 (b) shows one such example where several segments of a
fine split are lost after image segmentation.

It is noted that the pixel value |i,j,k at one spatial point
(i,j,k) on the kth slice is closely correlated with those at its
neighboring points on the (k – 1)th and (k + 1)th slices in a se-
quence.  Hence one way of improving the initial filter would be
incorporating into the filtering process the 3-d interdependence
information among pixels in consecutive slices.  By incorporat-
ing 3-d data into the initial filtering step, filter coefficients ai,j

and bi,j for filtering one image are computed from image data
in consecutive slices in a sequence.  This initial filter uses con-
secutive cross-sectional images to perform linear smoothing on
the pixels in a volume V with VR pixels associated with these
consecutive images.  The output of this initial filter is expressed
as

(4)

where I,J,K are the dimensions of a 3-d volume.

To calculate the optimum filter coefficients ai,j and bi,j for
the final estimate of the image signal at each point (i,j) on
the kth slice, a least squares (LS) criterion is introduced to
minimize the quadratic error

(5)

where R is defined as a M by M window with NR pixels in it,
and zij is computed using (2) with yij defined by (4).

Following Unser's procedures [8], the filter coefficients are
computed using the following equations:

(6)

(7)

where P(i,j) is the local estimate of the variance of the estimate
residue and is defined as

(8)

with

(9)

|i,j = ui,j + ni,j.
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Note that in equation (10), (1 – ρ)σ2 is the residue vari-
ance when filtering is not on the signal component, i.e., when
the residue variance is due to noise alone.  Hence whenever
the residue energy is small, the adaptive scheme will allocate a
predominant weight to the filtered signal.  On the other hand,
when the residue energy is greater than this level the weight is
shifted to the unfiltered signal.  The above argument is consis-
tent with the fact that an unusually large value of P(i,j) is an
indication that filtering tends to degrade the signal.

IV. Defects Detection Results

Images filtered using above adaptive filter are then seg-
mented on a image-by-image basis.  A histogram is first com-
puted from the filtered image data, and smoothed with a Gaus-
sian function resulting in a smoother curve on which segmen-
tation is based.  Fig.1 (c) shows the histogram of one CT log
image where different wood materials are marked with different
shades for display purpose.  An ordinary CT log image consists
of pixels representing background, splits, clear wood, knots,
and bark.  Since bark and knots both have similar CT numbers
in the image, they are temporarily treated like a single type of
defects.  Accordingly, three thresholds are determined on the
histogram to segment each image slice  into a number of uni-
form regions, each representing one of these four pixel types.
The detected defects will be fed into a recognition component
of the vision system where geometrical properties and texture
features are to be employed to recognize each individual defect.
The recognition component is still being developed.

To determine regions of potential defects, pixels of same
greylevel are grouped into connected regions according to the
4-neighborhood connectivity.  An integer number (about 10
pixels) is preset as a region size threshold against which all the
regions are to be compared.  Any region of a size smaller than
this threshold value is eliminated by merging it with its near-
est neighboring region.  This elimination process would usually
eliminate false defects resulted from segmentation and retain
the well defined regions as defects such as knots, bark, splits
and holes.  Experiment examples with CT images of a log are
given below to show the efficacy of the above described proce-
dures.

CT images used in this study are taken of a 10 feet long
red oak log with CT slices being 8 mm apart.  This sequence
of cross-sectional slices of the log consisted of 480 digital im-
ages of 12-bit CT numbers representing gray levels from -1024
to 1024 (or 0 to 2047 after a linear transform).  For purpose
of comparison, several image filtering algorithms were applied
to process a number of these 12-bit CT images.  The filtered
images were then segmented and labeled to produce several de-
fective regions.  Fig.2 illustrates one original CT image (a) to-
gether with the detection results using the 3r-filter (b), filtered
(c) and segmented (d) images using the modified 3-d adaptive
LS filter.  It is noted that in Fig.2 (b) there are several false
defective regions detected when the 3r-filter was used.  Fig.3

demonstrates the detection results of one CT image (a) using
Unser's 2-d method (b), filtered (c) and segmented (d) images
using the modified 3-d approach (c).  Note that in Fig.3 (d) the
fine split is captured almost completely, and the small discon-
nection is caused by an annual ring passing right through the
split.

V. Summary and Discussions

This paper describes an application of CT to the forest
product manufacturing industry.  It addresses one aspect of
the problems of creating a computer vision system that uses CT
image data to locate and identify internal defects in hardwood
logs.  In particular, the paper has discussed the image filtering
problem to remove the unwanted high frequence detail from
CT log images before image segmentation.  A modified version
of Unser's adaptive least squares filter is described that (1) is
quite suitable for processing CT log images since this approach
can be used regardless of the underlying signal model; (2) is
computationally very simple.  This method has been success-
fully applied to filter CT images for hardwood log inspection.
Research on developing a general methodology for recognizing
each individual class of defect in 3-dimension using geometrical
properties and texture features is currently underway.
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(a) original CT image.            (b) graylevel variation.

(c) histogram of image (a).        (d) segmentation (no filtering).

Fig.1 One example of log image (log1-s64)

(a) original CT image.          (b) using Unser's 2-d method.

(c) 3-d filtered image.             (d) using 3-d method.

Fig.2 Defects detection result 1 (log1-s3)

(a) original CT image.                 (b) using 2r method.

(c) 3-d filtered image.                (d) using 3-d method.

Fig.3 Defects detection result II (log1-s64)
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