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ABSTRACT

This paper presents a new curve matching method for 

deformable shapes using two-dimensional splines. In 

contrast to the residual error criterion [7], which is based 

on relative locations of corresponding knot points such 

that is reliable primarily for dense point sets, we use 

deformation energy of thin-plate-spline mapping between 

sparse knot points and normalized local curvature 

information. This method has been tested successfully for 

the detection and database retrieval of deformable shapes.

1. INTRODUCTION 

Curve matching is one of the fundamental tasks in 

computer vision and has been used to detect and 

recognize two- or three-dimensional (2D or 3D) objects 

[22]. Because of its importance, several approaches have 

been proposed in pursuit of finding an efficient and 

general curve-matching algorithm [3,10,14,15,16,17,21]. 

The detection and recognition of non-rigid, deformable 

curves (or shapes) are particularly well suited to curve-

matching methods [5,12,17], and active contour models 

[18] called “snakes” have been popular for over a decade 

for modeling and detecting deformable curves in a plane. 

Meanwhile, curvature scale space representation [24] has 

been selected for MPEG-7 standard shape descriptor in 

database retrieval application. Among them, B-spline 

snakes [19] have good potential to be extended into 

computer-aided geometric modeling and database query. 

In contrast to their utility for detection purposes, however, 

B-spline curve representations have rarely been used for 

curve recognition mainly because of the non-uniqueness 

of spline parameters [9]. 

Addressing this non-uniqueness in their pioneering 

work, Cohen et al. [7] used B-spline knot-point matching 

for curve classification and recognition. In order to 

account for affine invariance, they estimated the 

underlying affine transformation between two curve 

representations by utilizing moment invariants, and 

aligned the curves by undoing the transformation [16]. A 

similar approach is presented in [15], in which both 

affine-invariant features and B-spline object curves are 

used for coarse-to-fine matching. However, both 

approaches have dealt only with affine transformed 

objects, still leaving in doubt their capability to deal 

adequately with deformable objects. Furthermore, these 

approaches used oversampled spline knot points and/or 

other features to minimize negative effects due to point 

mismatches. 

Motivated by the need to develop a general 

(especially B-spline based) curve matching algorithm that 

works on affine transformed objects, as well as on 

deformable objects, we present a new approach that 

incorporates deformable mapping and geometric 

characteristics (strain energy) of spline curves.  Our 

approach operates with small knot sets, and avoids the 

need for oversampling. A thin plate spline (TPS) model 

[4] is used in order to extract the deformable mapping 

parameters between two sets of corresponding points 

determined by a match matrix method [10] combined 

with deterministic annealing. Similar point 

correspondence problems are addressed in [1,6]. A major 

difference of our point-correspondence method compared 

to others is that, when constructing the match matrix, 

geometric information of curves is incorporated at 

accompanying points in addition to distances. The result 

is that good matching results are often obtained even with 

sparse point sets. 

Based on the point correspondences that are found, 

strain energy is calculated to evaluate dissimilarity for 

each corresponding pair of curve segments. Strain energy 

is often used as an internal constraint of snakes [18]. Here, 

however, a mean strain energy is used, which is 

normalized according to arc length. Along with the 

deformation energy that is computed when the point 

correspondence is considered, the strain energy is 

incorporated into our cost function for curve matching. 

Section 2 overviews spline curve representation and 

estimation, especially for closed curves, and section 3 

addresses point correspondence problem and deformation 

energy. A new matching cost function is formulated in 

section 4. Section 5 experiments the method, and section 

6 concludes the paper. 
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2. B-SPLINE CURVE AND FITTING 

As a widely used function approximation tool, splines 

have been extensively used in computer aided geometric 

design and computer graphics. They have also proven to 

be useful for curve representation in computer vision and 

image analysis applications [2,13,15]. 

Given a set of knots 0 1 0{ } [ , ]g gt t t t t R , an 

n-degree B-spline function 1( )n

iN t  over 1[ , ]i i nt t is

defined with the concept of divided difference [9], 
1

1 1

01
0

( )
n n

n n
li i n i i j i j i l

j l j

N t t t t t t t ,    (1) 

where
n

x c  has value 
n

x c  if x c, and is otherwise 

0. The set of B-splines, denoted 1 1

0{ ( )}n g n

i iN t , have 

following properties: positive for all t, local support, and 

partition of the unity property. The B-splines are Cn-1

continuous at the knots, and any Cn-1 planar curves f(t)

over [tn, tg-n] has a unique representation  
1
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where [ ]x y

i i ic cc  are points in 2D, called control points. 

To describe closed curves, Flickner et al. [13] have 

constructed a periodic spline basis by extending the knot 

sequence, { }i it  with modi i gt t , and accordingly the 

basis functions by  

1
1( ) ( )

n
n

i i jg

j

N t N t                            (3) 

where 0( ) ( ( ))n n

i jg i gN t N t g t t . The basis still satisfies 

the above properties. A closed spline curve is then 

represented as 
1

1

0

( ) ( ) ( ) ( ),
g

n

ii
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t x t y t N t tf c .        (4) 

Given a periodic set of knots 0 1 1{ }gt t t , a 

least-squares spline fit f̂ of N data points can be obtained 

by finding least-square solution of the coefficient vector 

0 1[ , ]T T T

gc c c  as follows  
12

ˆ arg min T T
c v Ec E E E v .               (5)

where E is a linearly independent N g matrix with whose 

element is 
1

( )
n

jij iE N t with 0 0( )i gt t i t t N , i = 0,1, 

…,N-1. The vector v is a representation of the data points. 

Consequently, the fitted spline curve corresponding to the 

estimated control points is given by  
ˆ ˆ[ ]f x y Ec .                                 (6) 

Usually, the number of data points is much greater than 

the number of knots. Here, the parameterization ti is 

obtained by the uniform (equidistant) parameterization 

under the assumption of completely connected boundary 

data. However, a chord length parameterization 

method[11] is used in practical situation to cope with the 

cases that some boundary points are missing, because it 

preserves the geometry of data points. 

Figure 1. B-spline boundary representations for deformed 

objects. Squares and circles represent knot and control 

points, respectively. 

Determining the number of knots and their locations, 

known as the free-knot problem, is a much harder 

problem to which there currently exists no general 

optimal solution, though there are several proposed 

practical techniques. Recent research has addressed this 

problem from a statistical point of view [8,12]. For the 

simplicity of the implementation, a practical technique is 

adopted, by which the number of knots is iteratively 

increased based on fitting error calculation. Starting with 

a minimum number of uniformly distributed knots, a new 

knot is inserted in every iterations until the fitting error 

tolerance is satisfied. Knot location is determined by 

selecting a point that causes maximum fitting error. 

Hausdorff distance between v and f̂  is used for the error 

calculation. One constraint used in locating knots is to 

avoid both multiple or extremely close knots that may 

disrupt smoothness of the fitted spline curves. Figure 1 

shows examples of spline curve fitting. With a few knot 

points, the splines approximate object boundaries to a 

given error bound. Only cubic splines (n = 3) is 

considered throughout the paper. 

3. KNOT POINT CORRESPONDENCE

Finding point correspondence is a fundamental task in 

curve matching and recognition. It is particularly difficult 

when deformable shapes are involved, and becomes even 

worse if the point sets are sparse. As a small number of 

knots leads to reasonable spline approximation of object 

boundaries, the paper considers a point-correspondence 

problem for sparse knot points of spline curves. 

3.1. Sparse Knots Correspondence 

The general point correspondence problem is to find a 

match matrix M between two point sets, A and B, such 

that a cost function, consisted of a shape distance and a 

cost for outliers, is minimized. Outliers are points with no 

correspondence. Sets A and B may have different 

numbers of points, i.e., 1{ }p

j jA A  and 1{ }r

k kB B , and 

the match matrix ,

, 1, 1{ } j p k r

j k j kM M  is defined as follows 
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,

1

0
j kM

if point Aj corresponds to point Bk

otherwise 
(7)

Typically, the shape distance dM(A, B) is defined as 

1 1

1
, ,

p r

M jk j k

j k

d A B M d A B
M

,

where |M| is the number of 1’s in M, and d represents 

Euclidean distance between two points. The cost for 

outliers is ignored here if the matched points outnumber a 

minimum required number of pair. 

In spline curve matching, finding a point 

correspondence between control points or knots is not 

straightforward, because a B-spline curve is not uniquely 

described by a single set of control points. That is, with 

each different choice for the placement of the knot points, 

a different set of control points can be induced, still 

describing the same curve. Furthermore, in practical 

situations a few control points can represent outlines of 

most smooth objects, resulting in a few knots that worsen 

the matching problem. Therefore, direct comparison 

methods between control points or knots are not 

appropriate for spline curve matching. To overcome this 

drawback and to apply a direct comparison, a careful 

rearrangement of knot position has been studied in [16], 

but still the method requires dense knot distribution. 

This paper provides a means that resolves above-

mentioned drawbacks with sparsely distributed spline 

knots. First of all, a correspondence is found between two 

different sets of knot by means of match matrix technique. 

Each element of match matrix is assigned to 

1 2

2

1

2

2

1 ( ) ( )

exp ( , )

exp ( )

A B

jk j k

j k

A B A B

j k j k

m T e d T e

e d d A B

e

          (8) 

where a temperature variable T is used for deterministic 

annealing that is explained in later section. The 

symbols A

j  and B

k represent signed curvature of spline 

curves fA(t) and fB(t) at knot location j and k, respectively, 

and are defined as  
3

( )sign f f f f f .                          (9) 

The parameter (T) is a function of temperature and 

monotonically decreases from 0.8 to 0.2 as T does. 

Parameters  and  should be carefully selected to 

regularize the scale differences of d and k.

Equation (8) incorporates both Euclidean distance 

and curvature at knot locations, by which two 

geometrically different points would not match only 

because they are spatially close. In this formulation, the 

correspondence is mostly dependent on the curvature 

similarity at first, but as the temperature decreases the 

distance factor becomes more important. Here, by making 

 a function of Euclidean distance of two points, it is 

possible to consider the correspondence only for points 

within a given radius. As a similar method, there is a 

“softassign” technique [20]. Final match matrix is 

obtained by binarizing mjk.

3.2. Thin Plate Spline and Deformation Energy 

The thin plate spline (TPS) is a commonly used basis 

function for representing coordinate mappings from a 

point set 0{ ( , )}p

i i i ix yv  to its corresponding points 

0{ ( , )}p

i i i ix yv . Here, the locations (xi, yi) must be all 

different and are not collinear. Then, the TPS interpolant 

f(x, y) minimizes the bending energy 

2

2 2 22f xx xy yyI f f f dxdy                     (10) 

and has the form 

1

1

, , ,
p

x y i i i

i

f x y x y U x y x ya a a w     (11) 

where 2( ) logU r r r . The TPS parameters a1, ax, and ay

contribute to affine transform of the point set, while wi’s

are responsible for deformation of them. For the 

computation of the parameters, refer to [4]. Then, the 

bending energy, sometimes called deformation energy, is 

proportional to  
T

fI w Kw ,                                 (12) 

where (|| ( , ) ( , ) ||)ij i i j jK U x y x y . When noise is present 

between the corresponding points, the exact interpolation 

condition is relaxed by introducing a regularization 

parameter , and the minimization problem is given  
2

1

( )
p

i i f
i

f f Iv v .                (13) 

The  controls the amount of smoothing; the limiting case 

of =0 reduces to exact interpolation. The regularized 

case can be solved by simply replacing the matrix K by K

+ I, where I is the p p identity matrix [23]. Since the 

regularization parameter  is dependent on object scale, 

the size of objects is normalized to have maximum length 

of 1 and set  to 1. 

One drawback of the TPS model is that its solution 

requires the inversion of a large, dense matrix of size 

(p+3) (p+3), where p is the number of points in the data 

set. However, our curve matching algorithm performs the 

correspondence search only for spline knot points, which 

is a small set compared to the number of data points. This 

means that the size of the matrix can be much smaller 

than typical cases. 

3.3. Deterministic Annealing Method 

TPS has been also used for point correspondence 

problems of non-rigid objects [1,6]. A popular technique 

in solving such a non-rigid problem is to use 

deterministic annealing method. At a given high value of 

temperature T, the match matrix is extracted by the 
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equation (8). At this stage, the correspondence mostly 

depends on geometric information of object boundaries. 

Then, the TPS parameters are estimate based on the 

match matrix, and knot points are warped by the equation 

(11). As the temperature reduces, by which the 

correspondence becomes more relying on physical 

distance, the above procedure is repeated until M

converges.

Figure 2 shows an example for knot correspondence. 

Object A is the same as in Figure 1a, and object B is an 

affine transformed version of one in Figure 1b. Affine 

parameters are estimated by the means presented in [16]. 

Figure 2c shows the resulting knot correspondence. 

Outliers are depicted as open circles and squares. 

4. CURVE MATCHING 

4.1. Cost Function 

Match matrix M estimated in the previous section gives 

us one-to-one correspondence between two sets of knot 

points of B-spline curves. Let fA(t) be a p-knot periodic 

B-spline representation of curve A with knots 1{ }p

j jt , and 

let fB(s) be a similar representation of a curve B, having r

knots 1{ }r

k ks . Sets of knot points for each curve are 

calculated at each knot location and represented as 

1{ ( , )}A A p

j j j jA x y  and 1{ ( , )}B B r

k k k kB x y . Then, the match 

matrix M represents the correspondence of a group of 

points in 1{ }p

j jA  to a group of points in 1{ }r

k kB , yielding 

new ordered knot locations: 1{ }p

i it  and 1{ }p

i is , so that 

intervals 1[ , )i it t  and 1[ , )i is s  represent matching portions 

in curve fA(t) and fB(s), respectively. 

A matching cost between curve A and B, (A, B), is a 

sum of total deformation energy, d, and strain difference, 

s, and defined as 

1 1

2
2 2

1

, , ,

,

, ( ) ( )i i

i i

d s

T

d l l l
l

p
t sA A B B

s s t s
i

A B A B A B

A B

A B t dt s ds

w K w   (14) 

(a)  (b) 

(c) (d)
Figure 2. Example of sparse knots correspondence. 

where

1 1

A B
A Bi i

i i i i

C C

t t s s

The total deformation energy penalizes high 

deformation when the curve A deforms onto the curve B.

The deformation energy is calculated when searching the 

point correspondence as described in section 3. If the 

deterministic annealing repeats l times, the total 

deformation energy is the sum of each deformation.  

The strain difference measures the geometric 

dissimilarity between two curves by the squared sum of 

difference of strain energy. For each portion as shown in 

Figure 3a and b, mean strain energy is used as the 

dissimilarity measure. Here, 1 1pt t  and 1 1ps s . A 

special care is required when 1[ , )p i it t t  or 

1[ , )p i is s s for i = 1,…, p’. Convexity of curve segments 

is reflected in the parameters A

iC  and B

iC , having 1 for 

convex and -1 for concave. Figure 3c and d illustrate this.

The overall procedure is as follows: 

1. Perform contour extraction from an image. 

2. Fit periodic B-spline curve to the contour points. 

3. Find corresponding knots between the extracted B-

spline curve and a stored model. 

4. Calculate the matching cost. 

5. Repeat steps 3 and 4 for each stored model, and 

determine a model having the least cost. 

4.2. Initial Alignment 

The proposed matching algorithm, which requires point 

correspondences between sparsely distributed spline knot 

points, relies substantially on initial alignment of two 

objects to be matched. One means of achieving initial 

alignment is with an affine parameter estimator that uses 

moments calculated from spline curves [16]. However, it

(a) 1[ , )i it t  of fA(t)               (b) 1[ , )i is s  fB(s)

 (c) A B

i iC C                                   (d) A B

i iC C

Figure 3. Curve matching. 

is
1is

1is

1it it

1it

is
1is

1is

1it
it

1it
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has been experienced that the estimator is sensitive to 

noise and often comes up with poor results, especially for 

heavily transformed objects. 

To improve capability of the same estimator, an 

initial alignment is performed first by the use of 

multilevel approximation capability of spline curves [15]. 

The alignment repeats rotation and scaling as the 

boundary goes from coarse to fine scale by the 

incremental knot insertion. As an example, the coarsest 

(dotted) and the finest approximations of a model and an 

input object are depicted in figure 4a and b, respectively. 

Eigenanalysis of knot points of two spline curves 

determines rotation and scaling amount. Figure 4c shows 

a rotated and scaled version of the input object. At the 

coarsest level, the alignment would not be accurate 

enough and need more steps as shown in figure 4d-f. 

With the rough alignment, affine parameters are 

estimated based on the method described in [16]. Figure 

4g shows the final alignment. Knot correspondence is 

also depicted in the figure. Note again that the 

correspondence does not solely depend on Euclidean 

distance; instead that curvature information leads to 

correct point matching. 

5. EXPERIMENTAL RESULTS 

The proposed curve matching method has been tested 

successfully for model-based shape detection and 

database retrieval. First, the spline curve matching 

method proves an excellence on model-based shape 

detection. For this experiment, an image of blobs with 

different shapes, shown in Figure 5a, is used. Let the 

spline curve depicted in Figure 5b be a model for 

matching. The model is simply a spline approximation of  

(a) Model (b) Input object (c) 

(d) (e) (f) 

(g) Knot correspondence 
Figure 4. Alignment and point correspondence. 

a typical shape of interest, and contains a few knot points. 

Each blob in the input image is extracted and its boundary 

is approximated with a spline curve. Figure 5c shows the 

matching cost for nine blobs numbered in the input image. 

The values in the table correspond to total deformation 

energy ( d), a strain energy difference ( s), and matching 

cost ( ), respectively. s is set to 100 for all experiments 

presented here. Blobs numbered from B1 to B6 have 

relatively low matching cost, representing a good match 

to the model, while the others have high matching costs. 

Blob B2 has a relatively high cost compared to other 

detected ones due to its slightly displaced indentations. 

The spline matching method is tested for database 

retrieval application. A part of MPEG-7 benchmark 

dataset and silhouettes of object images are collected, and 

then they are affine transformed or deformed to build a 

database of 25 categories 380 silhouettes. Boundary 

curves of each object are approximated offline with B-

spline, and the hierarch of knot insertion is stored with 

each spline curve. For a given query shape, the spline 

curve matching is performed to find least cost objects 

from the database. The first column in Figure 5 shows 

query shapes, and following columns gives silhouettes of 

four low cost objects and one high cost object. Their 

matching costs are shown underneath. The experiment 

shows that matching cost within the same category is 

mostly less than 10 while matching between different 

categories produces higher cost. 

6. CONCLUSION 

A new curve matching method that uses sparse spline 

knot points is presented. Corresponding knot points are 

first detected automatically, and then deformation energy 

and strain differences of the spline approximations are 

calculated. Despite sparse distributions of knot points, the 

experimental results show that the method is promising 

for model-based shape detection and database retrieval. 

         (a) Blob image (b) A blob model 

B1 B2 B3 B4 B5 B6 B7 B8 B9

d

s

0.32

0.21

0.38

0.43

0.22

0.44

0.23

0.17

0.07

0.11

0.13

0.06

1.45

0.59

1.92

0.13

0.96

0.32

0.54 0.81 0.66 0.40 0.18 0.19 2.04 2.05 1.28

(c) Matching cost 

Figure 5. Model-based shape detection. 
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Figure 6. Database retrieval. 

The algorithm is implemented using MatlabTM on 

1.8GHz Intel Pentium PC with 256MB main memory. 

Although matching time is dependent on the size and 

shape of object, an average matching time is 0.15 second. 

This can be much improved when C or C++ is used.  

7. REFERENCES 

[1] A. Almansa and L. Cohen, “Fingerprint Image Matching by 
Minimization of a Thin-Plate Energy Using a Two-Step 
Algorithm with Auxiliary Variables”, 5th IEEE Workshop on 
Applications of Computer Vision, 2000, pp. 35-40. 
[2] A. Amini, R. Curwen, and J. Gore, “Sankes and Splines for 
Tracking Non-Rigid Heart Motion”, European Conf. on 
Computer Vision, Cambridge, U.K., 1996, pp.251-261. 
[3] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and 
Object Recognition Using Shape Contexts”, IEEE Trans. on 
Pattern Analysis and Machine Intelligence, vol. 24, no. 4, 2002, 
pp. 509-522. 
[4] F.L. Bookstein, “Principal Warps: Thin-Plate Splines and 
the Decomposition of Deformations”, IEEE Trans. on Pattern 
Analysis and Machine Intelligence, vol. 11, no. 6, June 1989, pp 
567-585.
[5] P. Brigger, J. Hoeg, and M. Unser, “B-Spline Snakes: A 
Flexible Tool for Parametric Contour Detection”, IEEE Trans. 
on Image Processing, vol.9, no.9, 2000, pp. 1484-96. 

[6] H. Chui and A. Rangarajan, "A New Algorithm for Non-
Rigid Point Matching", IEEE Conf. on Computer Vision and 
Pattern Recognition, vol. 2, 2000, pages 44-51. 
[7] F.S. Cohen, Z. Huang, and Z. Yang, “Curve Recognition 
using B-spline Representation”, IEEE Workshop on 
Applications of Computer Vision, 1992, pp. 213-220. 
[8] F.S. Cohen and J. Wang, “Part I: Modeling Image Curves 
Using Invariant 3-D Object Curve Models-A Path to 3-D 
Recognition and Shape Estimation from Image Contours”, IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 16, 
no. 1, January 1994, pp. 1-12. 
[9] P. Dierckx, Curve and Surface Fitting with Splines, Oxford 
University Press Inc., Oxford, U.K., 1993. 
[10] N. Duta, M. Sonka, and A.K. Jain, “Learning Shape 
Models from Examples using Automatic Shape Clustering and 
Procrustes Analysis”, 16th Intl. Conf. on Information 
Processing in Medical Imaging, Hungary, 1999, pp. 370-5. 
[11] G. Farin, Curve and Surfaces for Computer Aided 
Geometrical Design, San Diego, Academic Press, 1993. 
[12] M.A.T. Figueiredo, J.M.N. Leitao, and A.L. Jain, 
“Unsupervised Contour Representation and Estimation Using B-
Splines and a Minimum Description Length Criterion”, IEEE
Trans. on Image Processing, vol. 9, no. 6, 2000, pp. 1075-1087. 
[13] M. Flickner, J. Hafner, E.J. Rodriguez, and J.L.C. Sanz, 
“Periodic Quasi-Orthogonal Spline Bases and Applications to 
Least-Squares Curve Fitting of Digital Images”, IEEE Trans. on 
Image Processing, vol. 5, no. 1, 1996, pp. 71-88. 
[14] Y. Gdalyahu and D. Weinshall, “Flexible Syntactic 
Matching of Curves and its Application to Automatic 
Hierarchical Classification of Silhouettes”, IEEE Trans. on 
Pattern Analysis and Machine Intelligence, vol. 21, no. 12, 
December 1999, pp.1312-1328. 
[15] Y. Gu and T. Tjahjadi, “Coarse-to-Fine Planar Object 
Identification Using Invariant Curve Features and B-Spline 
Modeling”, Pattern Recognition, vol. 33, 2000, pp. 1411-22. 
[16] Z. Huang and F.S Cohen, “Affine-Invariant B-Spline 
Moments for Curve Matching”, IEEE Trans. on Image 
Processing, vol. 5, no. 10, 1996, pp. 1473-1480. 
[17] A.K. Jain, Y. Zhong, and S. Lakshmanan, “Object 
Matching using Deformable Templates”, IEEE Trans. on 
Pattern Analysis and Machine Intelligence, vol. 18, no. 3, 1996, 
pp. 267-278. 
[18] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active 
Contour Models”, Intl. Journal of Computer Vision, vol. 1, no. 4, 
1988, pp. 321-331. 
[19] S. Menet, P. Saint-Marc, and G. Medioni. “Active Contour 
Models: Overview, Implementation and Applications”, IEEE
Conf. on Systems Management and Cybernetics, 1990, pp. 194-
199.
[20] A. Rangarajan, H. Chui, and F.L. Bookstein, “The 
Softassign Procrustes Matching Algorithm”, Information 
Processing in Medical Imaging, James Duncan and Gene Gindi, 
eds., Springer, 1997, pages 29-42. 
[21] D. Skea, I. Barrodale, R. Kuwahara, and R. Poeckert, “A 
Control Point Matching Algorithm”, Pattern Recognition, vol. 
26, 1993, pp. 269-276. 
[22] H.J. Wolfson, “On Curve Matching”, IEEE Trans. on 
Pattern Analysis and Machine Intelligence, vol. 12, Issue 5, 
May 1990, pp. 483 –489. 
[23] G. Wahba, Spline Models for Observational Data, SIAM, 
1990.
[24] F. Mokhtarian and A.K. Mackworth, Curvature Scale 
Space Representation: Theory, Applications, and MPEG-7 
Standardization, Kluwer Academic Publishers, 2002. 

251

ACCV2004



Proceedings of the
Sixth Asian Conference on Computer Vision

ACCV 2004

Editors : Ki-Sang Hong and Zhengyou Zhang

January 27~30, 2004
Jeju, Korea

Volume 1

Organized by
The Korean Society of Broadcast Engineers

Supported by
Ministry of Information and Communications
Korea Research Foundation

Sponsored by
LG Electronics Inc.
SAMSUNG Electronics



Printed in Republic of Korea by Paco Design, #1528 LG Palace, Dongkyo-dong, Mapo-

gu, Seoul 121-200

This book comprises papers presented at the 6
th
 Asian Conference on Computer Vision

(ACCV2004). The papers reflect the authors’ opinions and are published as presented

and without change, in the interests of timely dissemination. Their inclusion in this

publication does not necessarily constitute endorsement by the editors or by AFVC.

ISBN 89-954842-0-9 94560 (2 volumns),

Also available in CDROM format (ISBN 89-954842-0-9 98560)

Published by :

Asian Federation of Computer Vision Societies (AFCV)

Copyright © 2004, Asian Federation of Computer Vision Societies.

Copying of material in this book, other than for individual scholarly purposes, is

prohibited. Copying for republication, resale, advertising or promotion, or any form of

systematic or multiple reproduction of any material in this book is prohibited except

with permission in writing from the publisher.


	ABSTRACT
	INTRODUCTION
	B-SPLINE CURVE AND FITTING
	Figure 1.

	KNOT POINT CORRESPONDENCE
	Sparse Knots Correspondence
	Thin Plate Spline and Deformation Energy
	Deterministic Annealing Method
	Figure 2.


	CURVE MATCHING
	Cost Function
	Figure 3.

	Initial Alignment
	Figure 4.


	EXPERIMENTAL RESULTS
	Figure 5.

	CONCLUSION
	Figure 6.

	REFERENCES

