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Abstract 
 
This paper presents a novel hierarchical approach to 

triangular mesh generation from height fields. A wavelet-
based multiresolution analysis technique is used to 
estimate local shape information at different levels of 
resolution. Using predefined templates at the coarsest 
level, the method constructs an initial triangulation in 
which underlying object shapes are well preserved. 
Wavelet detail coefficients directly control the selection of 
appropriate templates, and are then used for subdividing 
and refining the initial mesh.  

 

1. Introduction 
 
The triangular mesh is a popular means of representing 

three-dimensional surfaces, and multiresolution analysis is 
often used to allow surface approximations at varying 
levels of spatial resolution [1,2]. Multiresolution 
approaches, particularly those moving from coarse to fine 
resolution, can often improve the computational efficiency 
of mesh generation. 

This paper concerns the use of wavelet-based multi-
resolution methods to construct a triangular-mesh surface 
approximation from a single range image. The novel 
approach presented here directly evaluates wavelet 
coefficients to assess surface shape characteristics 
bounded in each triangular patch at a given scale, and then 
subdivides and refines triangles based on the evaluation.  
As the system moves to finer resolution levels, subdivision 
and refinement steps are repeated to construct a final 
triangular mesh with desired approximation accuracy. 

Related work includes multiresolution surface recovery 
[5,6] and representation [7], in which spline wavelets are 
typically utilized to approximate the surface directly with 
spline functions. A wavelet-based surface approximation 
for irregularly sampled points has also been studied [8,18]. 
While most earlier studies have focused on parametric 
surface representation, however, a few researchers have 
considered triangular mesh generation directly from 
wavelet coefficients. By decomposing range data with 
wavelets, Gross et al. [3] have directly used wavelet 
coefficients to assist in pruning vertices from a quadtree 

structure before triangulation. Yu and Ra [4] have 
extended the work to include edge information. 

For manipulating the constructed triangular surface 
mesh, many computer graphics and computer-aided 
geometric design applications have adopted multi-
resolution techniques, especially with a wavelet-based 
framework. As means of multiresolution description of 
meshes, wavelets have very attractive features from a 
computational point of view [15], and many researchers 
have considered decomposition and reconstruction of 
triangular meshes [10,11,12]. In one case, a specially 
designed wavelet is used to represent functions on the 
sphere [16,20]. Multiresolution analysis has also been 
considered for irregular surfaces meshes and for arbitrary 
shapes [17,19].  

Fast triangulation methods for terrain data have also 
been developed. Garland and Heckbert [22] developed 
optimized algorithms for Delaunay and data-dependent 
triangulation criteria, and other researchers focused on 
real-time meshing and level-of-detail rendering [23,24]. 

This paper presents a new approach for constructing 
triangular meshes for surface approximation relatively 
quickly. The emphasis is on selecting a small number of 
triangles subject to a specified error tolerance. The next 
section of this paper presents an overview of wavelet-
based multiresolution approaches to hierarchical mesh 
generation. In section 3, a set of triangulation templates is 
constructed, and section 4 describes how wavelet 
coefficients improve the efficiency of coarse-to-fine mesh 
refinement. Experimental results and concluding remarks 
are presented in section 5 and section 6, respectively. 

 
2. Multiresolution mesh generation 

 
A common approach in multiresolution analysis is to 

convert a given dense dataset to a hierarchy of 
representations, each associated with a different scale.  Let 
m=0 represent the resolution level of original data. 

 
2.1 Background:  wavelet decomposition 

 
A common way to decompose two-dimensional signals 

is to use tensor product wavelets. Let φx=φ(x) be a scaling 
function and ψx=ψ(x) be a corresponding wavelet basis of 
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L2(R), a set of finite energy functions. Then, tensor 
product wavelets given by 

ψ1(x, y) = ψxφy, ψ2(x, y) = φx ψy, and ψ3(x, y) = ψxψy, (1) 
and the wavelet family  

{ } 2

1 2 3
, , , , , , ( , )

( , ), ( , ), ( , )m i j m i j m i j i j
x y x y x yψ ψ ψ

∈
        (2) 

constructs a two-dimensional orthonormal basis of detail 
space at resolution level m [9]. Each , ,

k
m i jψ  is derived by 

scaling and shifting the corresponding function ψk: 
, ,

k
m i jψ (x, y) = 2-mψk(2-mx−i, 2-my−j) for 1≤k≤3. 

With 2D scaling function φm,i,j(x,y)=2-mφ(2-mx−i)φ(2-my−j), 
therefore, any f(x,y) ∈ L2(R2)  can be represented by  
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where aM,i,j = <f,φM,i,j> and , , , ,,k k
m i j m i jd f ψ=< > . The symbol 

<⋅,⋅> denotes an inner product, and M is the highest 
decomposition level. The equation shows that the original 
function consists of the coarsest approximation and detail 
information at resolution levels 1≤m≤M. Hence, a function 
f can be approximated by 
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and τm is a threshold for detail coefficients at level m. 
Since the detail coefficients reflect directional variation 

of data in a given region, a large magnitude in 1
, ,m i jd , 2

, ,m i jd , 
and 3

, ,m i jd  tends to be caused by data discontinuities in 
horizontal, vertical, and diagonal directions, respectively. 

 
2.2 Multilevel hierarchical mesh generation 

 
Consider a two-dimensional data set taken at a grid of 

sample points V0 in R2. A hierarchical mesh is obtained by 
constructing an initial mesh ˆ

MΓ  at the coarsest level, M, 
with a set of sample points ˆ

MV , and by refining the initial 
mesh to finer meshes 1

ˆ
M −Γ , 2

ˆ
M −Γ , …, 0Γ̂ , with sets 1M̂V − , 

2 0
ˆ ˆ, , ,MV V−  respectively. The original dataset is 

approximated over the entire domain by a piecewise 
planar function fm that interpolates all data values at points 
of m̂V , 0≤m≤M. Typically, the number of points in m̂V  
increases as m decreases, and generally 0 0V̂ V≠ . This 
implies that 1

ˆ ˆ| | | |m m−Γ <Γ  for 1<m≤M, where |⋅| represents 
mesh size, and 0 0

ˆ| | | |.Γ ≠Γ  Consequently, the error 
εm=||f−fm||∞, defined in the L∞(R2) norm, which means 
maximum error, decreases as m does. 

In most applications, the main goal of mesh generation 
is to minimize 0

ˆ| |Γ  subject to ε0 being kept below a given 
error criterion. However, the minimization of mesh size 
for a given accuracy is an NP-hard problem and heuristics 
are needed for practical implementation. 

 
2.3 Algorithm description 

 
The concept of the new method for generating 

triangular meshes is illustrated in Figure 1. Wavelet 

decomposition is first used to construct a multiscale 
representation of input data. Next, assuming that a 
rectangular grid at the coarsest level represents the 
coarsest mesh ΓM (Figure 1a), the algorithm examines 
detail coefficients , ,

k
M i jd , (i,j)∈Z2 for each rectangular grid 

in order to estimate underlying shape information. Then, 
proper triangulation templates are selected based on these 
coefficients to tessellate the rectangular mesh. This 
produces a finer mesh 1M −Γ  which needs to be refined 
afterward in trying to obtain a more accurate and compact 
representation, that is, 1

ˆ
M −Γ . Finally, subdivision and 

refinement procedures are iterated as the decomposition 
level decreases until the mesh satisfies a given error 
criterion or the finest level is reached. 

The novelty of the work includes the template 
construction and the direct use of wavelet coefficients on 
the subdivision and refinement processes. The use of 
templates boosts the triangulation speed and reduces the 
number of triangles by setting up a data-dependent initial 
mesh at the very beginning. In addition, wavelet 
coefficients guide the subdivision and refinement for faster 
processing and more compact and accurate representation. 
Refinement techniques used here are known as edge 
swapping and vertex removal, and have often been used 
for polygonal surface simplification [10,11,12]. 
 
3.  Initial triangulation 

 
A good initial representation could improve efficiency 

of all subsequent procedures. The proposed method uses 
47 predefined templates, which are defined and examined 
in this section, to obtain initial triangular meshes. 

 
3.1 Template construction 

 
Templates constructed here are designed to preserve 

the shape information reflected in detail coefficients. By 
the dyadic property of wavelet decomposition, wavelet 
detail coefficient , ,

k
M i jd  represents shape information 

contained primarily in each square patch with opposite 
corners given by (i2M, j2M) and ((i+1)2M, (j+1)2M). The set 
of corner points is ˆ

MV = {(i2M, j2M)| 0≤i≤C/2M, 0≤j≤R/2M}, 
where (C, R) is the size of dataset. If 

1 3

1
, , , ,| | max(| |)

k

k
M i j M i jd d

≤ ≤
=  

and 1
, ,| |M i j Md τ> , for example, then there is a strong 

evidence of a depth discontinuity along the horizontal 
direction within the corresponding square patch, and the 

1
, ,M i jd  is considered as a dominant coefficient in the patch. 

A simple example is shown in Figure 2 to illustrate how 
the templates correspond to underlying shapes. Proper 
templates are chosen based on investigating wavelet detail 
coefficients. Note that the templates tend to place triangle 
edges along depth discontinuities.  
 
 
 
 
        (a) 2Γ̂              (b) 1Γ               (c) 1Γ̂               (d) 0Γ̂  
Figure 1. Illustration of mesh generation using M=2. 
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Figure 2a shows dominant coefficients inside each square. 
The square on the left top corner does not have a dominant 
coefficient because the region is relatively flat. 

 
3.1.1. Basic templates. There are four basic templates to 
which each dominant coefficient corresponds. Figure 3 
shows the templates and their construction, denoting as πf, 
πv, πh and πd for flat, vertical, horizontal, and diagonal 
templates, respectively. The template πf is for relatively 
flat (planar) portions of data, and there is no additional 
vertex. The other three templates introduce vertical, 
horizontal, and diagonal edges into square regions, 
respectively, with additional vertices. The edges are 
intended to obtain better approximation of discontinuities 
contained in the dataset. All other templates are 
constructed by varying these basic templates. 

 
3.1.2. Variants. One of the four basic templates in Figure 
3 could be chosen independently for each square of ΓM . 
However, this would not result in a true triangulation, as 
illustrated in Figure 4a where two templates, πh and πv, are 
placed side by side. The vertex v from template πh is not 
matched with any other vertices of πv. In order to avoid 
this kind of discrepancy, an additional set of templates is 
inevitable so that vertex compatibility can be retained. 
Figures 4b and 4c show two possible variations of 
templates πv, and the one in Figure 4b has better mesh 
regularity and is chosen as a variant for this case. In total, 
3 variants for each πv and πh, and 15 variants for each πf 
and πd are added to the basic templates. 

 
3.1.3 Duals. A better fit can be achieved, with only a 
modest additional amount of computational cost, if more 
templates are considered. The additional templates, called 
duals, could reduce a substantial amount of error for some 
cases. Figure 5 illustrates the usage of a dual vertical 
template. It shows that the dual template vπ  obviously fits 
the given region better than its original template πv. Proper 
use of dual templates speeds up the triangulation process 
by avoiding unnecessary operations, and results in a better 
approximation with fewer triangles. 

Introducing duals increases complexity in selecting a 
template for a given situation. Directional information 
embedded in detail coefficients, however, simplifies the 
selection process. When spline wavelets are used, it is 
appropriate to interpret 1

md  and 2
md  as approximations of 

two partial derivatives of input data at scale m [9]. That is, 
the approximation is given by 

1 1 2 1, ,m m
m md s x d s y− −≈∂ ∂ ≈∂ ∂                      (5) 

where sm−1 is average information at level m−1. Thus, the 
orientation of the discontinuity can be estimated by 

( )1 2 1( , ) tanm
m mx y d dθ −≈ .                        (6) 

All templates are collected in Figure 6. Variants of πf 
and πd are not displayed here because of space limitations. 
Template πf has only one dual, and no duals exist for πd 
and variants of πf  due to symmetry. 
 

 
 
 
  
                       (a)                                  (b) 
Figure 2. Illustration of (a) dominant coefficients and 
(b) corresponding templates.  
 
 
 
 
 
 

Figure 3. Construction of basic templates. 
 
 
 
 
             (a)                           (b)                           (c) 
Figure 4. Variants. (a) Basic templates lying side-by-
side may be incompatible in vertex location and need a 
change to the templates as shown in (b) and (c). 

 
 
 
 
 
                    (a)                                            (b) 

Figure 5. Data fitting with (a) πv and (b) its dual vπ . 
 
 
 
 
                (a)                                             (b) 
 
 
 
 
                (c)                                             (d) 
Figure 6. Complete set of templates. Variants are on 
the right side of each basic template, and duals are 
located underneath. 
 
3.2. Examples of initial triangulation 

 
Two synthetic datasets are approximated to evaluate the 
feasibility of the templates defined in the previous section. 
The first dataset is a hyperbolic quadratic surface sampled 
at 128×128 grid points, ranging from -20 to 52.2. The 
second dataset represents a hill shape having gradually 
varying values from 0 to 128 in a diagonal direction. The 
datasets are decomposed up to level M=4 with a spline 
wavelet, yielding 8×8 rectangular grids. Initial triangular 
meshes are shown on top of Figure 7. The mesh size, 3Γ , 
is 272 for the hyperbolic surface and 158 for the hill. At 
the bottom are approximations depicted with errors ε3 = 
1.177 and 0.241, respectively. The error is measured as 

πf πv 

πd πh 

v

15 variants

No duals 

15 variants

No duals 

πv vπ  

1
, 1,M i jd +

3
, 1, 1M i jd + +  2

, , 1M i jd +  

0-7695-2158-4/04 $20.00 (C) 2004 IEEE



 
 
 
 
 
 
 
 
 
 
 
        (a) Quadratic surface         (b) Diagonal hill 

Figure 7. Initial triangulation examples. 
 

normal distance in the L∞ norm. 
The dotted curves in the triangulation of Figure 7a 

indicate level contours of the quadratic surface. Note that 
the triangle edges tend to follow the contour curves; that is, 
our initial triangulation method places triangle edges along 
contour curves of given surfaces. The same tendency is 
shown for the second dataset. 

 
4. Local subdivision and refinement 

 
The goal of a coarse-to-fine mesh construction scheme 

is to build progressively toward a more accurate 
approximation by increasing the number of triangles.  For 
economy of representation, however, new triangles should 
be introduced only where warranted by the underlying 
data. In contrast to most refinement methods, our approach 
uses wavelet detail coefficients directly for finding 
triangles to be subdivided. These triangles are subdivided 
through a process called edge split. The resulting mesh is 
then refined through edge swap and vertex removal steps. 
 
4.1 Candidate regions, valid pairs and edge split 

 
For the sake of computational efficiency, candidate 

regions are identified before subdivisions take place. First, 
triangles whose interior detail energy, defined as  

1 2 2 2 3 2
, , , , , , , ,| | | | | |m i j m i j m i j m i je d d d= + + ,             (7) 

is greater than a threshold δd are identified as “active” 
regions, and their neighbors are called “passive” regions 
(Figure 8). Triangle T is a candidate when detail 
coefficients at (i, j)=floor(bx, by) have a large amount of 
energy, where (bx, by) is the center of mass of the triangle. 
Triangles in active regions must be subdivided since they 
may produce high approximation error, and triangles in 
passive regions take part in subdivision process only if 
necessary. More discussion on regions is found in [21]. 
The algorithm next searches for a valid pair, which is a 
pair of two triangles that share an edge and have consistent 
data discontinuities through the common edge. Wavelet 
detail coefficients are used to determine valid pairs that 
could lead to best subdivisions. Figure 9 illustrates the 
concept. Triangles T1 and T2 in Figure 9a are adjacent with  

 
 
 
 
 
 

Figure 8. An active region and its neighbors. 
 
 
 
 
 
 
                         (a)                                  (b) 

Figure 9. (a) Valid pair. (b) Invalid pair. 
 
an edge Eab and they are associated with vertical 
discontinuities. Dominant coefficients for both triangles 
are highly likely to be 1

, , , ,1 3
| | max(| |)k

m i j m i jk
d d

≤ ≤
= . Accordingly, the 

pair T1−T2 is said to be valid. On the other hand, the 
triangles T2 and T3 in Figure 9b contain vertical and 
horizontal discontinuities, respectively. The discontinuity 
is not "consistent" across Ebc, and T2 and T3 are not 
considered as a valid pair. Consequently, splitting Eab 
creates a better approximation than splitting Ebc. The split 
position can be chosen at the midpoint of Eab, but a more 
sophisticated method is possible, in which edge direction 
and estimated discontinuity orientation are utilized [21]. 
When a triangle is involved in more than one pair, the 
algorithm chooses the pair that has the longest common 
edge. 
 
4.2 Mesh refinement 

 
4.2.1. Edge swap. The edge-split operation alone often 
produces very narrow triangles called slivers. Sometimes 
these slivers are inevitable and represent good fits to the 
input data. In most cases, however, eliminating slivers 
does not reduce the quality of approximation appreciably. 
A well-known approach to eliminating slivers is the edge 
swap operation. This is implemented by altering diagonals 
of the quadrilateral formed with two adjacent triangular 
faces, as illustrated in Figure 10a. When the edge swap 
produces a degenerate triangle whose vertices are collinear, 
the triangle is removed at a cost of possible increase in 
approximation error for the counterpart triangles. 

The swap operation is controlled by a mesh regularity 
factor α  in a swap criterion 

( , ) ( , )i j i jT T t tξ → = αRθ  + (1−α)Rε ,               (8) 
where Rθ and Rε respectively represent alteration ratios of 
minimum angles and approximation errors of two different 
triangulations, (Ti-Tj) and (ti-tj), obtained by a swap 
operation. If the value ξ is greater than a unity, the edge 
must be swapped. The parameter α controls regularity of 
triangular meshes. When α=1, the resulting triangulation 
has Delaunay properties [14], while α=0 produces pure 

  

a 

b 

c 
e

T1 
d 

T3 T2 

(bx,by) 
(i, j) 

Active region 
 
Passive region 

T1

a

b

c 
e 

T3 
T2 

d 
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data-dependent triangulation. Thus, for 0<α<1, the 
function allows slivers to some degree if the error 
reduction is significant and the triangles are not 
excessively thin. 

 
4.2.2. Vertex removal. Another technique employed for 
refinement is a vertex removal, in which the number of 
triangles is reduced by removing unnecessary vertices. 
Figure 10b illustrates the vertex removal operation. If a v-
neighborhood N(v), defined as triangles sharing a vertex v, 
has little variation in surface normal, then the vertex v can 
be removed without a significant loss of accuracy in 
approximation. After the removal, the remaining polygon 
(shaded in gray) is re-triangulated with a constrained 
Delaunay triangulation method, by which non-convex 
polygons are triangulated with Delaunay properties. 

The variation of surface normal can be measured by 
autocorrelation analysis of the normal vectors ni in N(v). 
Let k be the number of triangular patches in N(v). Then, a 
3×3 autocorrelation matrix is defined as 

T

1

1( )
k

i i
ikv
=

= ∑R n n .                          (9) 

Typically, the largest eigenvalue of R(v) corresponds to 
deviation from the origin, and two small eigenvalues 
represent variation of the surface normal from the average 
direction. The criterion for vertex removal, therefore, is to 
evaluate the two small eigenvalues to see if they are less 
than a threshold δλ. This is another important factor 
determining mesh quality. A high value of δλ will smooth 
out high frequencies in triangulation. In contrast, a dense 
and more accurate triangular mesh is generated with low 
δλ. 

 
4.3 Successive split and swap 

 
Successive use of the edge split and swap procedures 

can produce all subdivision templates commonly used in a 
triangular mesh subdivision scheme [13]. The procedure is 
illustrated in Figure 11, where the subdivision templates 
are shaded in gray. For the sake of drawing this effect, the 
split and swap operations are iterated three times for each 
resolution level. 
 
 
 
 
 
           (a) Edge swap                   (b) Vertex removal 

Figure 10. Mesh refinement. 
 
 
 
 
 
 
Figure 11. Successive split and swap operations. All 
subdivision templates (shaded) commonly used in 
mesh optimization can be produced. 

5. Experimental results 
 
Six height fields have been used for evaluating the 

proposed triangulation method:  two datasets each of 
synthetic data, terrain data, and range images.  Figure 12 
shows the datasets. Synthetic datasets (BALL and BOX) 
vary from 0 to 250 units. The two terrain datasets are 
digital elevation data for the island of Hawaii (ISLAND) 
and of Crater Lake (LAKE), Oregon, downloaded from the 
USGS. ISLAND ranges from 0 (sea level) to 4,245 m, and 
LAKE from 1,730 to 2,477 m. These terrain datasets were 
clipped and sub-sampled to have the size of 256×256. 
Range image BOARD was acquired using a structured-light 
method, and its height varies from 0 to 45 in steps of 1/16 
inch. The other range image, PERC, was downloaded from 
the University of South Florida and converted so that 39 
cm represents the farthest point from the viewer (the 
background wall) and 276.8 cm represents the nearest 
point (the foremost floor point). The dataset PERC is of 
size 512×512. The range images contain a considerable 
amount of noise. 
 
5.1 Multilevel triangulation 

 
The graph in Figure 13 shows that the number of 

triangles increases as the resolution level m decreases, 
lowering maximum approximation error. Here, five data 
sets are decomposed up to level 5 with spline wavelets, 
and error criteria are set to 1 unit, 2 meters, and 2/16 
inches for synthetic, terrain, and range data, respectively. 
Terrain datasets show a sudden increase in the number of 
triangles at m=3 and 2. This is due to high wavelet detail 
energy in mountainous regions. In Figure 14, 
triangulations for each level and a rendered output for the 
finest approximation are depicted for the ISLAND dataset. 
As m decreases, triangle subdivision takes place only in 
ridge and peak regions. 

The final triangulations and approximations for the 
synthetic datasets are shown in Figure 15. For the BALL 
dataset, the triangulation is fairly well distributed in good 
symmetry, with large triangles around the center and 
smaller ones toward the boundary. This is because the 
wavelet detail energy at the boundary is high. The dataset 
BOX has sharp edges and corners. These features make the 
approximation error stay high until the final triangulation 
is achieved. The proposed method successfully places 
large triangles on the faces of the box and triangle edges at 
box edges. Since the method does not perform exhaustive 
search for optimal triangulation, the final output still has a 
few redundant triangles, but it can be a good initial mesh 
for any further optimization process. 

 
5.2 Level-of-detail control 

 
The level of detail is controlled by varying the 

threshold δd for wavelet detail energy. Results are 
summarized in Table 1 for the LAKE dataset. At δd=0.1, 
the triangulation approximates the data with a maximum 

e 
v 

Split 

Split 
Split 

Swap 

(Remove 
degenerate 

case) 
Split 

Swap 
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error of 2 meters, and the error increases as does δd. The 
table also shows the number of vertices used in each 
triangulation. With only 2.92% of the original set of data 
points, the approximation error is kept below 2m. Figure 
16 shows four triangulations according to four different 
detail energy thresholds. 

   
(a) BALL (b) BOX (c) ISLAND 

   
(d) LAKE (e) BOARD (f) PERC 

Figure 12. Datasets for experiments. 
 

 
Figure 13. The number of triangles and maximum error 
according to resolution level m. 

 

(a) m=4 

 

(b) m=3  

(c) m=2 

 

(d) m=1  

(e) m=0 

 

(f)  
Figure 14. Multilevel triangulation. 

 

Figure 15. Final meshes and approximations for 
synthetic datasets.  

Table 1. Level-of-detail control with δd. 
δd 0.1 1 2 4 6 8 10 

0
ˆ| |Γ  3758 3526 2872 1811 1393 1180 1065 

0
ˆ| |V  1916 1800 1470 941 735 631 570 
% 2.92 2.75 2.25 1.44 1.12 0.96 0.87 
ε0 2 7.0 11.4 16.9 28.0 29.5 30.5 

 
 

(a) δd=1

 

(b) δd=2  
 

(c) δd=4 

 

(d) δd=8  
Figure 16. Triangular meshes with different δd. 

 
5.3 Mesh regularity factor 

 
To investigate the effect on mesh regularity factor α 

introduced in equation (8), different α values were tested 
with the ISLAND dataset. Table 2 shows the number of 
triangles 0

ˆ| |Γ  generated for each value of α. Here, the 
same error tolerance is set for all triangulations. The case 
α=0 allows triangle slivers, generating a pure data 
dependent triangulation, while α=1 leads to Delaunay 
triangulation. The 0

ˆ| |Γ  value generally increases with α, 
but it is also possible that low α causes more triangles than 
high α (=0.2). Our experiments have revealed that α=0.6 
to 0.8 gives the best performance in terms of mesh 
regularity and the number of triangles. 
 

Table 2. Mesh regularity. 
α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0
ˆ| |Γ 1912 2005 2167 2152 2218 2321 2369 2383 2492 2511 2651

 
5.4 Noisy data and selective triangulation 

 
Triangulations of the noisy dataset BOARD are shown 

in Figure 17. Noise causes a many tiny triangles, as shown 
around the boundary of the scanned board (17a), and most 
of them are not necessary for further processing such as 
boundary detection. A wavelet de-noising technique [9] 
reduces the noise level in the data and leads to avoid 
unnecessary triangles (17b). A similar effect can be 
achieved with the level-of-detail control capability. 

Figure 18 shows an example of selective triangulation 
that is similar to one presented in [3]. Many computer 
vision tasks deal with a couple of small objects in a scene. 
Therefore, extracting out some candidates could expedite 
the tasks. For these purpose, the wavelet-based approach 
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                   (a)                                         (b) 
Figure 17. Noisy data. Wavelet de-noising is applied to 
reduce the noise level in the dataset. 
 
 
 
 
 
 

Figure 18.  Selective triangulation example. 
 
has advantage: as the resolution level increases, non-target 
regions are identified and corresponding wavelet 
coefficients are suppressed by which no further 
subdivision and refinement take place in those regions, 
while target objects proceed to a full reconstruction. 
 
6. Conclusions 

 
A novel wavelet-based hierarchical triangular mesh 

generation method has been presented and tested for 
approximating range and intensity images. The method 
utilizes wavelet coefficients in order to extract 
multiresolution shape information from the underlying 
data, and this is used to guide the triangulation process. In 
particular, initial triangulation is very fast through the use 
of predefined templates. A new edge split operation 
subdivides the initial mesh into finer approximations. 
Experimental results show that the proposed method 
provides a better compromise in terms of speed, error of fit, 
and mesh size. For example, the method of [22] 
approximates the dataset LAKE with 5,000 vertices 
producing 3 meters of RMS error in about 15 seconds, but 
for the same dataset our method uses 4,132 points to 
obtain a maximum error of less than 1 meter. Our 
unoptimized code takes 8 seconds for this result on a 
1GHz PC. With other mesh operations such as edge swap 
and vertex removal, the method is capable of 
multiresolution triangular mesh generation, level-of-detail 
control, and selective triangulation. 
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