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Abstract - Splines can be used to approximate noisy data with a
few control points. This paper presents a new curve matching
method for deformable shapes using two-dimensional splines. In
contrast to the residual error criterion [7], which is based on
relative locations of corresponding knot points such that is
reliable primarily for dense point sets, we use deformation
energy of thin-plate-spline mapping between sparse knot points
and normalized local curvature information. This method has
been tested successfully for the detection and recognition of
deformable shapes.

I. INTRODUCTION

Curve matching is one of the fundamental tasks in
computer vision and has been used to detect and recognize
two- or three-dimensional (2D or 3D) objects [22]. Because
of its importance, several approaches have been proposed in
pursuit of finding an efficient and general curve-matching
algorithm [3,10,14,15,16,17,21]. The detection and
recognition of non-rigid, deformable curves (or shapes) are
particularly well suited to curve-matching methods [5,12,17],
and active contour models [18] called “snakes” have been
popular for over a decade for modeling and detecting
deformable curves in a plane. Among them, B-spline snakes
[19] have good potential to be extended into computer-aided
geometric modeling and database query. In contrast to their
utility for detection purposes, however, B-spline curve
representations have rarely been used for curve recognition
mainly because of the non-uniqueness of spline parameters
[9].

Addressing this non-uniqueness in their pioneering work,
Cohen et al. [7] used B-spline knot-point matching for curve
classification and recognition. In order to account for affine
invariance, they estimated the underlying affine
transformation between two curve representations by utilizing
moment invariants, and aligned the curves by undoing the
transformation [16]. A similar approach is presented in [15],
in which both affine-invariant features and B-spline object
curves are used for coarse-to-fine matching. However, both
approaches have dealt only with affine transformed objects,
still leaving in doubt their capability to deal adequately with
deformable objects. Furthermore, these approaches used

oversampled spline knot points and/or other features to
minimize negative effects due to point mismatches.

Motivated by the need to develop a general (especially B-
spline based) curve matching algorithm that works on affine
transformed objects, as well as on deformable objects, we
present a new approach that incorporates deformable
mapping and geometric characteristics (strain energy) of
spline curves. Our approach operates with small knot sets,
and avoids the need for oversampling. A thin plate spline
(TPS) model [4] is used in order to extract the deformable
mapping parameters between two sets of corresponding
points determined by a match matrix method [10] combined
with deterministic annealing. Similar point correspondence
problems are addressed in [1,6]. A major difference of our
point-correspondence method compared to others is that,
when constructing the match matrix, geometric information
of curves is incorporated at accompanying points in addition
to distances. The result is that good matching results are often
obtained even with sparse point sets.

Based on the point correspondences that are found, strain
energy is calculated to evaluate dissimilarity for each
corresponding pair of curve segments. Strain energy is often
used as an internal constraint of snakes [18]. Here, however,
a mean strain energy is used, which is normalized according
to arc length. Along with the deformation energy that is
computed when the point correspondence is considered, the
strain energy is incorporated into our cost function for curve
matching.

Section 2 overviews spline curve representation and
estimation, especially for closed curves, and section 3
addresses point correspondence problem and deformation
energy. A new matching cost function is formulated in
section 4, and demonstrations of the method are presented in
section 5. Section 6 concludes the paper.

II. B-SPLINE CURVE ESTIMATION

As a widely used function approximation tool, splines
have been extensively used in computer aided geometric
design and computer graphics. They have also proven to be
useful for curve representation in computer vision and image
analysis applications [2,13,15].
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A. B-Spline Representation of Curves

Given a set of knots 0 1 0{ } [ , ]g gt t t t t R< < < ⊂ ⊂ , an n-
degree B-spline function 1( )n

iN t+ over 1[ , ]i i nt t + + is defined
with the concept of divided difference [9],
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where [ ]x y
i i ic c=c are now points in 2D, called control

points.
To describe closed curves, Flickner et al. [13] have

constructed a periodic spline basis by extending the knot
sequence, { }i it ∞

=−∞ with modi i gt t= , and accordingly the basis
functions by
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where 0( ) ( ( ))n n
i jg i gN t N t g t t+ = − − . The basis still satisfies

the above properties. A closed spline curve is then
represented as
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B. Least-Squares Spline Curve Fitting

Given a periodic set of knots 0 1 1{ }gt t t −< < < , a least-
squares spline fit f̂ of N data points should minimize

2δ = −v Ec , (5)

where c is a g×2 coefficient vector of control points, and E is
a linearly independent N×g matrix with whose element is

1
( )

n
jij iE N t
+

= . The vector v is a representation of the data
points and is given by
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with its parameterization 0 0( )i gt t i t t N= + − . Usually the
number of data points is much greater than the number of
knots. Here, the parameterization ti is obtained by the
uniform (equidistant) parameterization under the assumption
of completely connected boundary data. However, a chord
length parameterization method [11] is used in practical
situation to cope with the cases that some boundary points are
missing, because it preserves the geometry of data points.

Then, the least-squares solution of (5) to find the
coefficient vector 0 1[ , ]T T T

g −=c c c is

( ) 12ˆ arg min T T−
= − =c v Ec E E E v . (7)

Consequently, the fitted spline curve corresponding to the
estimated control points is given by ˆ ˆˆ ˆ[ ]= =f x y Ec .

Determining the number of knots and their locations,
known as the free-knot problem, is a much harder problem to
which there currently exists no general optimal solution,
though there are several proposed practical techniques.
Recent research has addressed this problem from a statistical
point of view [8,12].

For the simplicity of the implementation, a practical
technique is adopted, by which the number of knots is
iteratively increased based on fitting error calculation.
Starting with a minimum number of uniformly distributed
knots, a new knot is inserted in every iteration until the fitting
error tolerance is satisfied. Knot location is determined by
selecting a point that causes maximum fitting error.
Hausdorff distance between v and f̂ is used for the error
calculation. One constraint used in locating knots is to avoid
both multiple or extremely close knots that may disrupt
smoothness of the fitted spline curves. Figure 1 shows
examples of spline curve fitting. With a few knot points, the
splines approximate object boundaries to a given error
bound. Only cubic splines (n = 3) is considered throughout
the paper.

III. SPARSE KNOT POINTS CORRESPONDENCE

Finding point correspondence is a fundamental task in
curve matching and recognition. It is particularly difficult
when deformable shapes are involved, and becomes even
worse if the point sets are sparse. As a small number of knots
leads to reasonable spline approximation of object
boundaries, the paper considers a point-correspondence
problem for sparse knot points of spline curves.

A. Point Correspondence

The general point correspondence problem is to find a
match matrix M between two point sets, A and B, such that a
cost function, consisted of a shape distance and a cost for
outliers, is minimized. Outliers are points with no
correspondence. Sets A and B may have different numbers of
points, i.e., 1{ }p

j jA A == and 1{ }r
k kB B == , and the match

matrix ,
, 1, 1{ } j p k r

j k j kM M = =
= == is defined as follows

Typically, the shape distance ( ),Md A B is defined as

( ) ( )
1 1

1
, ,

p r

M jk j k
j k

d A B M d A B
M = =

= ∑∑ , (8)

where | |M is the number of 1’s in M. In this paper, the cost
of outliers is ignored if the matched points outnumber a
minimum required number of pair.

,

1

0j kM


= 


if point jA corresponds to point kB

otherwise
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(a) (b) (c)

Figure 1. B-spline boundary representations for two affine-related
objects (a-b) and a severely deformed object (c). Squares represent
control points and small circles indicate knot points.

B. Corresponding Sparse Knots

Unfortunately, a B-spline curve is not uniquely described
by a single set of control points. That is, with each different
choice for the placement of the knot points, a different set of
control points can be induced, but still describe the same
curve. Thus, the direct comparison between their control
points or knots is not appropriate for curve matching.
Furthermore, in practical situations a few control points can
represent outlines of most smooth objects, resulting in a small
knot set that worsens the matching problem. To overcome
this drawback in spline curve matching, and to apply direct
comparison method, a careful rearrangement of knot position
has been applied [16]. In this paper, the knot correspondence
is formulated as a point correspondence problem with the
match matrix having elements assigned as

( ) ( )( )22exp , A B
jk j k j km d A B T κ κ= − − − (9)

where a temperature variable T is used for deterministic
annealing, which is described later section. The symbols A

jκ
and B

kκ represent curvature of spline curves ( )A tf and ( )B sf
at knot position j and k, respectively, and are defined as

3
κ = ×f f f . (10)

Equation (9) incorporates both Euclidean distance and
curvature at knot points, by which two geometrically
different points would not match only because they are
spatially close. This is similar to the “softassign” method in
[20], but instead each element jkm is discretized making the
match matrix comply with the definition in previous section.

C. Thin Plate Spline Deformation Energy

The thin plate spline (TPS) is a commonly used basis
function for representing coordinate mappings from a point
set 0{ ( , )}p

i i i ix y ==v to its corresponding points

0{ ( , )}p
i i i ix y =′ ′ ′=v [4]. Here, the locations ( , )i ix y must be all

different and are not collinear. Then, the TPS interpolant
( , )f x y minimizes the bending energy

( )2

2 2 22f xx xy yyI f f f dxdy= + +∫∫ (11)

and has the form
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where 2( ) logU r r r= , and TPS coefficients a1, ax, ay, and wi

are 2×1 column vectors. Together with the interpolation
conditions, ( , ) ( , )i i i if x y x y′ ′= , and other constraints on wi’s,
this yields a linear system for the TPS coefficients:
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where , (|| ( , ) ( , ) ||)i j i i j jK U x y x y= − , the ith row of P is
( )1, ,i ix y , 1[ ]T

x y=a a a a , O and o are zeros matrices, w
and ′v are formed from wi and i′v , respectively. The
subscripts indicate size of matrices. Then, the L is
nonsingular, and the bending energy, sometimes called
deformation energy, is proportional to

T
fI ∝ w Kw . (14)

When noise is present between the corresponding points,
the exact interpolation condition is relaxed by introducing a
regularization parameter λ , and the minimization problem is
given

( )( )2

1
( ) ,

p

i i i f
i

f f x y Iξ λ
=

′= − +∑ v . (15)

The λ controls the amount of smoothing; the limiting case of
0λ = reduces to exact interpolation. The regularized case

can be solved by simply replacing the matrix K by λ+K I ,
where I is the p×p identity matrix [23]. Since the
regularization parameter λ is dependent on object scale, the
size of objects is normalized to have maximum length of 1
and set λ to 1.

One drawback of the TPS model is that its solution
requires the inversion of a large, dense matrix of size
(p+3)×(p+3), where p is the number of points in the data set.
However, the proposed curve-matching algorithm performs
the correspondence search only for spline knot points, which
is a small set compared to the number of data points. This
means that the size of matrix L can be much smaller than
typical cases.

D. Deterministic Annealing Method

TPS has been also used for point correspondence
problems of non-rigid objects [1,6]. A popular technique in
solving such a non-rigid problem is to use deterministic
annealing method. At a given high value of temperature T,
the match matrix is extracted by the equation (9). At this
stage, the correspondence mostly depends on geometric
information of object boundaries. Then, the TPS parameters
are estimate based on the match matrix, and knot points are
warped by the equation (12). As the temperature reduces, by
which the correspondence becomes more relying on physical
distance, the above procedure is repeated until M converges.
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(a) Object A (b) Object B (c) Knot Correspondence
Figure 2. Example of sparse knot correspondence.

Figure 2 shows an example for knot correspondence.
Object A is the same as in Figure 1a, and object B is an
affine transformed version of one in Figure 1b. Affine
parameters are estimated by the means presented in [16].
Figure 2c shows the resulting knot correspondence. Outliers
are depicted as open circles and squares.

IV. COST FUNCTION AND MATCHING

Match matrix M estimated in the previous section gives us
one-to-one correspondence between two sets of knot points
of B-spline curves. Let ( )A tf be a p-knot periodic B-spline
representation of curve A with knots 1{ }p

j jt = , and let ( )B sf be
a similar representation of a curve B, having r knots 1{ }r

k ks = .
Sets of knot points for each curve are calculated at each knot
location and represented as 1{ ( , )}A A p

j j j jA x y == and

1{ ( , )}B B r
k k k kB x y == . Then, the match matrix M represents the

correspondence of a group of points in 1{ }p
j jA = to a group of

points in 1{ }r
k kB = , yielding new ordered knot locations:

1{ }p
k kt ′

=′ and 1{ }p
k ks ′

=′ , so that intervals 1[ , )k kt t +′ ′ and 1[ , )k ks s +′ ′
represent matching portions in curve ( )A tf and ( )B sf ,
respectively.

A matching cost function between curve A and B, ( , )A Bξ ,
is a sum of total deformation energy, ( , )d A Bξ , and strain
difference, ( , )s A Bξ , and defined as

( ) ( ) ( )
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22 2
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d l l l
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A B A B A B
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ξ ξ ξ
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′ ′ ′

′ ′
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where

1 1

( 1) ( 1)
A B
i iC C

A B

i i i it t s s
µ µ

+ +

− −= =
′ ′ ′ ′− −

The total deformation energy penalizes high deformation
when the curve A deforms onto the curve B. The deformation
energy is calculated when searching the point correspondence
as described in section III. If the deterministic annealing
repeats l times, the total deformation energy is the sum of
each deformation. The strain difference measures the
geometric dissimilarity between two curves by the squared
sum of difference of strain energy. For each portion, mean
strain energy is used as the dissimilarity measure. Here,

1 1pt t′ +′ ′= and 1 1ps s′+′ ′= . A special care is required when

1[ , )p k kt t t +′ ′∈ or 1[ , )p k ks s s +′ ′∈ for 1, ,k p′= . Convexity of
curve segments is reflected in the parameters A

iC and B
iC ,

having 0 for convex and 1 for concave. The overall
procedure is as follows:

1. Perform contour extraction from an image.
2. Fit periodic B-spline curve to the contour points.
3. Find corresponding knots between the extracted B-spline

curve and a stored model.
4. Calculate the matching cost.
5. Repeat steps 3 and 4 for each stored model, and

determine a model having the least cost (best match).

V. EXPERIMENTAL RESULTS

The proposed curve matching method has been tested
successfully with three different datasets. First, a set of ivy
leaves was arbitrarily affine transformed and then slightly
deformed as shown in Figure 3. The outlines of the original
leaves are depicted in the second row, and the outlines of the
resulting deformed objects are shown in the next three rows.
Original leaves are labeled L1 to L6, and the deformed
objects are labeled D1 to D3. This dataset is used to measure
the shape matching capability of the proposed method.

Matching costs defined in equation (16) are calculated for
the dataset and summarized in Table 1. The first six columns
of the table show matching costs between leaves, and the next
three columns show matching costs between the originals and
their deformed versions. The values in the table correspond
to strain energy difference sξ , deformation energy dξ , and
total cost ( , )i jL Lξ , respectively. sλ is set to 100 for all
experiments presented here. The table shows that different
shapes have high sξ and/or dξ , resulting in high total cost.
The leaf pairs L1-L6, L2-L4, and L3-L5, however, are quite
similar in shape and their matching costs are relatively low
compared with other pairs. Meanwhile, the matching costs
between an original leaf and its deformed outlines are
noticeably low. This demonstrates the ability of the algorithm
to recognize deformed shapes, by matching each one to its
original.

The matching algorithm, which requires point
correspondences between sparsely distributed spline knot
points, relies substantially on initial alignment of two objects
to be matched. One means of achieving initial alignment is
with an affine parameter estimator that uses moments
calculated from spline curves [16]. However, it has been
experienced that the estimator is sensitive to noise and often
comes up with poor results, especially for heavily
transformed objects. To improve the capability of the same
estimator, an initial rough alignment is provided by using the
multilevel approximation capability of spline curves [15].
Since the incremental knot insertion method is used, the
initial approximation curves resemble ellipses and shows
global trends of object boundaries. Figures 4a and 4b show
the fine (solid) and the coarse (dotted) spline approximations
of L4 and its D1 form. Geometric relations such as rotation
and scaling can be obtained by eigenanalysis of a few points
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L1 L2 L3 L4 L5 L6

D1

D2

D3

Figure 3. Ivy leaves dataset. The original leaves (L1 to L6) are
affine transformed and then deformed to form D1 to D3. Scales of
deformed objects are normalized for display purpose.

Table 1. Each cell shows matching cost. sξ , dξ , and ( , )i jL Lξ .

cλ is set to 100.
L1 L2 L3 L4 L5 L6 D1 D2 D3

L1 0
1.50
1.06
2.56

2.99
0.92
3.91

3.59
0.76
4.35

2.32
0.90
3.22

0.93
0.40
1.33

0.49
0.41
0.90

0.37
0.71
1.08

0.44
0.63
1.07

L2
1.40
1.17
2.57

0
1.09
1.51
2.60

0.44
0.66
1.10

1.56
1.79
3.35

1.31
0.75
2.06

0.32
0.67
0.99

0.37
0.54
0.91

0.33
0.30
0.63

L3
3.70
0.68
4.38

1.22
0.87
2.09

0
2.20
0.72
2.92

0.81
0.76
1.57

5.40
0.95
6.35

0.19
0.23
0.42

0.09
0.33
0.42

0.26
0.51
0.77

L4
3.36
0.97
4.33

1.83
0.09
1.92

2.51
0.69
3.20

0
3.00
0.77
3.77

2.36
0.55
2.91

0.47
0.61
1.08

0.21
0.89
1.10

0.43
0.46
0.89

L5
1.87
0.77
2.64

2.36
0.22
2.58

0.87
0.73
1.60

2.46
0.30
2.76

0
3.05
0.54
3.59

0.16
0.56
0.72

0.36
0.33
0.69

0.12
0.17
0.29

L6
1.20
0.79
1.99

2.22
0.76
2.98

4.29
1.58
5.87

2.66
0.90
3.56

4.13
1.00
5.13

0
0.46
0.62
1.08

0.51
0.55
1.06

0.57
0.61
1.18

sampled from the two coarse approximations. The finer-scale
spline fit of D1 is rotated and scaled, and the result is shown
in Figure 4c. With the rough alignment, affine parameters are
estimated based on the method described in [15]. Figure 4d
shows the final alignment. The figure also shows the knot
correspondence with labels. Note that the correspondence
does not solely depend on Euclidean distance and that instead
curvature information leads to correct point matching.

The next experiment shows that the spline curve matching
method is capable of model-based shape detection. For this
experiment, an image that contains different shapes of blob as
shown in Figure 5a is used. Let the spline curve depicted in
Figure 5b be a model for matching. The model is simply a
spline approximation of typical shape of interest, and
contains a few knot points. Each blob is segmented from the
image and its boundary is approximated with a spline curve.
Matching results for selected blobs that are numbered in the
image are shown in Figure 5c. Blobs numbered from B1 to
B6 are correctly detected as matches to the model,

(d) Knot correspondence
Figure 4. Alignment and point correspondence.

(a) Blob image (b) A blob model

B1 B2 B3 B4 B5 B6 B7 B8 B9
0.32
0.21
0.54

0.38
0.43
0.81

0.22
0.44
0.66

0.23
0.17
0.40

0.07
0.11
0.18

0.13
0.06
0.19

1.45
0.59
2.04

1.92
0.13
2.05

0.96
0.32
1.28

(c) Matching cost
Figure 5. Model-based shape detection.

while the others have high matching costs. Blob B2 has a
relatively high cost compared to other detected ones due to
its slightly displaced indentations.

The last experiment demonstrates the ability of the
proposed curve matching method to classify tree outlines.
This is often performed manually as a means of evaluating
the state of a tree’s health. A reliable curve matching system
could be used in tree health monitoring system. Tree outline
models are depicted with their labels in the first two rows in
Figure 6. Input tree images are segmented, and outlines are
obtained automatically through spline fits by interpolating
local convex points. Then the curve matching method is
applied to determine which model outline is the best fit to
each extracted tree outline. In the figure, tree outlines are
represented with solid lines, and corresponding best-fit
models are denoted with dotted line. It can be seen that
appropriate outline models can be selected by using this
matching method.

VI. CONCLUSION

This paper has presented a new curve matching method
using sparse spline knot points. Corresponding knot points
are first detected automatically. The system then calculates
deformation energy and strain differences of the spline
approximations. Despite sparse distributions of knot points,
the experimental results show that the method is promising
for shape detection and recognition. Because only a few knot
points are used in the matching process, the algorithm is fast
and is applicable to real-time tasks such as target detection,
industrial robot vision, etc.

(a) L4 (b) D1 of L4

(c) Transformed
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Figure 6. Model-based tree outline classification.
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