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Abstract 
Despite the importance of improving lumber processing early in manufacturing, scanning of unplaned, green 

hardwood lumber has received relatively little attention in the research community. This has been due in part to the 
difficulty of clearly imaging fresh-cut boards whose fibrous surfaces mask many wood features. This paper describes a 
prototype system that scans rough, green lumber and automatically provides an optimal edging and trimming solution 
along with resulting lumber grades. The system obtains thickness (profile) and reflectance information at 1/16-inch (1.6-
mm) resolution, using commercially available laser sources and a video camera. It analyzes the resulting images to detect 
wane and important lumber-degrading defects. A hierarchical defect detection scheme first analyzes the profile image for 
shape-based characteristics to locate wane, and to identify holes, splits, and background. Wane boundaries are detected 
with 3/16-inch (5-mm) error on average. The reflectance image is then assessed using a modular artificial neural network 
(MANN) to locate clear wood, knots, and decay. The MANN consists of a multilayer perceptron network for the 
detection of clear wood, and a statistically trained radial basis function network that identifies knots and decay. With this 
approach, we have achieved a pixel-level classification accuracy of 96.7%. Finally, a postprocessing step refines MANN 
output by identifying manufacturing marks that have been incorrectly classified as defects. Application software then 
finds optimal solutions for placement of cuts to yield maximum commercial value.  

1. Introduction 
In most of today�s hardwood sawmills, edger and trimmer operators make a quick visual examination 
of each board and determine the placement of cuts based on their knowledge of lumber grades and 
current lumber prices. Unfortunately, several problems adversely affect their decision-making ability. 
First, visual estimates of board surface area and grade are subjective. Second, prices can fluctuate 
rapidly. Third, there exist millions of potential edging and trimming settings that must be considered. 
Fourth, edger operators tend to be biased toward the removal of wane beyond what is necessary by 
lumber grading rules. These reasons, together with such fundamental issues as operator training and 
fatigue, suggest that a strong need exists for an automated solution. 

Losses from improper edging and trimming can be substantial. Williston [10] reported that for some 
mills 45% of a log�s original volume is converted into chips from slab boards and from edgings. As 
described above, most sawmill edger operators remove an excessive amount of wood, and this can 
result in value losses of 30% [2]. Volume and value losses from improper trimming operations 
exacerbate the severity of edging losses. In a case study of 3 hardwood mills, Regalado et al. [8] found 
that edging and trimming operations resulted in lumber values that were only 65% of optimum. 
Because of the large amount of waste that occurs in current edging and trimming practices, computer-
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controlled optimization of edging/trimming operations is essential for increasing profits for conserving 
the timber raw material, and for creating primary products of high value. 

This paper describes a prototype system that scans rough, green lumber and automatically provides 
an optimal edging and trimming solution along with resulting lumber grade. Unlike most board-
scanning systems, which process planed wood, this system has been designed specifically for use with 
unplaned boards in the green state. In the rough state, boards commonly hold additional wood fiber, 
debris, dirt, and saw marks. All of these can increase the difficulty of image analysis. These difficulties 
are mitigated somewhat if the wood is still in a �just cut�, undried state when imaged. The additional 
moisture that is present immediately after log breakdown tends to produce images with higher 
contrast, particularly near some defect types, and this can be used to advantage during image analysis. 
Very little work has addressed image-related problems that are specific to rough lumber. Some early 
research [3-5] considered defect detection in rough lumber, but they subsequently abandoned the 
rough-lumber problem and looked instead at surfaced lumber. For a typical hardware sawmill layout, 
the new system would be placed immediately after the headrig. Early descriptions of the system appear 
in Lee et al. [6, 7, 18]. The remainder of this paper focuses on the problems of image acquisition, wane 
detection, and surface defect detection. 

2. System Setup and Data Acquisition 
2.1 Scanning System 
Our prototype scanning system uses pinch-rollers to move boards under a video camera that is 
mounted vertically, looking downward as depicted in Figure 1. The camera is positioned to capture a 
16-inch (0.41 m) field of view, yielding a resolution of 1/16 inch (1.6 mm) per pixel. Two side-
mounted laser sources obtain reflectance information, and an additional laser source, mounted 
downstream of board movement, is used to measure thickness (profile) information. All three laser 
sources are solid-state devices, producing fan-shaped sheets of light. The system currently scans 
boards at 2 feet/s (0.6 m/s). 

2.2 Profiling 
The system uses a common technique to obtain profile images, which are use here to identify wane 
and voids [11]. Because of the placement of the downstream laser source, with the plane of light 
angled at approximately 45 degrees relative to the surface of the board, triangulation can be used to 
determine small variations in board thickness. Greater board thickness causes larger offsets for the 
bright laser curve in the image. Our system obtains thickness measurements at 1/16-inch spacing (1.6 
mm), along both the width and length of each board. Because many lumber attributes, particularly 
voids and wane, are associated with surface irregularities, profiling is extremely useful. Some existing 
commercial systems use a variation of this approach to determine board edges and to guide edge saws, 
although those systems are not concerned with defect detection, and obtain measurements at much 
lower resolution lengthwise on the board. Automatic detection of incoming boards is possible by 
monitoring profile data, activating the system to collect profile and tracheid information. 

2.3 Reflectance Imaging 
Two laser sources are positioned at the sides of the camera for reflectance (brightness) imaging. Much 
of this light is reflected from the surface of the wood, but a portion of the light is scattered within the 
wood, giving a bright region around the point of incidence. The amount of internal scattering depends 
heavily on the physical characteristics of the wood. Known as a "tracheid effect" [9], the internal 
scattering takes advantage of the differential reflectance of laser light in response to grain angle and 
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different densities on the board. While hardwoods do not contain tracheids, they do contain vessels 
that are smaller and fewer in number, but effect a similar phenomenon. One approach to assessing 
vessel-induced scatter is to compute sums of pixel intensity values in a direction perpendicular to the 
laser line, but not including the central laser line itself. Increased scattering can be detected in this 
manner and used to detect defects. 

Figure 1:  Scanning system (detail view).  
Three laser sources provide illumination for one video camera. 

3. Defect Detection and Identification 

3.1 Preprocessing 
Preprocessing of the acquired image prior to defect detection is essential. In our implementation, this 
comprises tracheid-profile registration, profile smoothing, and background removal. Because of the 
need for real-time operation, relatively simple steps are employed. 

Registration is a fundamental task in image processing. It finds the best alignment between two or 
more images that are obtained at different times, from different sensors, or from different viewpoints. 
In our scanning system, the profile and reflectance information are taken from a moving object using 
different sensor rows of the camera. The collected images are therefore displaced slightly. 

Profile images of rough hardwood boards suffer from various noise sources:  residual bark, debris, 
and dust; spatial quantization of the sensor array; sampling and quantization of intensity values; 
thermal sensor noise; and problems in thickness estimation due to variations in surface reflectance. 
Residual bark and debris make it difficult to detect wane boundaries with high accuracy. Unlike other 
noise sources, which can be eliminated in many cases by applying smoothing filters, residual bark and 
debris are more resistant. In fact, because no smoothing filter can perfectly remove noise due to bark 
and debris from the wane area, this presents the most challenging part of the wane detection problem 
from profile images. 

3.2 Modular Decision-Tree Approach for Defect Identification 
Early attempts at defect identification did not provide satisfactory results, so we applied modular 
approach to tackle this problem. Typical modular methods consist of several modules of which each 
module is specialized for a specific task. Because the prototype scanning system collects two different 
images, they can be utilizable separately for different defect types. The block diagram in Figure 2 
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presents an overview of the modular identification system. Profile images are first analyzed to identify 
the background and to detect wane and void regions. Simple adaptive thresholding [12] of the profile 
image effectively removes the background. Wane is then identified within the remaining wood using a 
novel approach based on surface shape characteristics [7]. Then, voids (holes and splits) are identified 
by simply thresholding the remaining portion of the profile image. 

Figure 2:  Block diagram for overall classification procedure. Two registered images are provided as 
input. The profile image is first analyzed for shape-based characteristics. The reflectance image is 
then assessed using a modular artificial neural network to determine the locations of clear wood, 

knots, and decay. 

At this point, remaining unclassified regions represent the board surface that must be examined to 
locate any other defects. A modular artificial neural network (MANN) assigns tentative labels to each 
pixel using reflectance information inside the unclassified region. Within the MANN, a multi-layer 
perceptron network (MLPN) identifies clear (unblemished) wood; and a statistically trained radial 
bases function network (RBFN) labels other defects (knots and decay). A competitive decision scheme 
resolves the output from the two networks. To speed up the process, the MANN examines only 
�suspicious� regions, which are areas darker than clear wood. Finally, a post-processing step refines 
the MANN output, by eliminating many misclassifications, e.g., manufacturing marks that might be 
incorrectly labeled as defects. 

The first task is to remove background that is not related to the actual wood area. Instead of using a 
fixed limit for thresholding, we implemented Otsu�s threshold selection method [12] to threshold the 
profile image and effectively removed the background. 

Wane detection, at first glance, seems to be a simple problem that requires only the selection of a 
threshold thickness for each board. However, for several reasons including additional bark and debris 
that is present on rough boards, we found that simple thresholding is not adequate for determining 
wane regions in profile images. For an accurate determination of wane boundary in the presence of 
bark and debris, the system utilizes surface properties such as orientation and curvature along with a 
set of criteria representing the characteristics of wane boundary. As described in [7], the system finds 
local quadratic fits to profile data, and uses this to compute curvature and surface-normals. Related 
analyses can be found in [14, 15]. 
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After background removal and wane detection, only the board surface remains. For the surface, 
profile information is examined again to determine where splits and holes lie. A simple thresholding 
operation, applied only to the board surface, is fast and reliable for void detection. Then shape analysis 
is used to identify split and hole regions. Geometric assumptions are used, including the expectations 
that holes are round and splits are narrow in shape. At this stage of classification, only the non-wane 
board surface that is free of voids remains for defect identification. 

Because the dominant portion of each board is clear wood, feeding data from those regions into a 
defect classifier wastes considerable processing time and should be avoided if possible. Typically, 
clear wood regions are fairly different in reflectance values from defect regions, so a carefully selected 
threshold can eliminate clear wood region from further classification. Because clear wood constitutes 
most of each board, an average reflectance value for the board will correspond closely to clear wood, 
and serves as a reasonable threshold for eliminating clear wood. The threshold value is set based on 
the statistical mean and standard deviation. Only the part of a board below this threshold value, called 
a "suspicious" region, is fed into the MANN, eliminating a substantial amount of classification effort. 

Principal component analysis (PCA) is an efficient method for dimensionality reduction of an input 
data set without a significant loss of information. It performs an eigen-analysis on a covariance matrix 
of sample data, and creates a transform matrix by choosing eigenvectors corresponding to eigenvalues 
greater than a certain value. The transform matrix converts a number of (possibly) correlated variables 
into a (smaller) number of uncorrelated variables called principal components. The artificial neural 
networks (ANNs) described in the next section use texture information from a reflectance image as 
input. Data are taken from a small window of size 7�7 placed at a location that is targeted for 
classification. However, the texture information stored in this input vector is highly correlated and it is 
possible to reduce its dimensionality with PCA. This reduces the size of the ANNs, resulting in faster 
classification. The scanning system selects only 24 principal components out of 49 dimensions. 

In [16], Jacobs et al. described several advantages that a modular network possesses over a single 
ANN in terms of learning speed, representation capability, and the ability to deal with hardware 
constraints. If the input space is complex or has a mixture of features from different classes, a modular 
network is often able to learn faster than a single network because each module responds to a single 
class. In our classification problem, early experimental results showed that a traditional MLPN often 
resulted in unsatisfactory classification performance. Similarly, the use of a single RBFN to classify all 
defects along with clear wood required an exorbitant number of RBFN nodes in the hidden layer. 
Therefore, we decided to subdivide the classification problem so that one network distinguishes clear 
wood from defects, and a second network considers defects only. We selected a small MLPN for clear 
wood classification, using only a small number of nodes in the hidden layer. Due to the complexity of 
the latter problem, we decided to use an RBFN to distinguish knots from decay. For both networks, 
careful consideration was given to the number of nodes in the hidden layer. 

In most RBFN applications, the primary concerns are to determine the kernel function and to select 
a reasonable number of nodes. A common approach is to select one node per training sample, and then 
focus on the selection of kernel function parameters [17]. However, this can result in prohibitive 
computational costs when the training set is large. On the other hand, if the number of nodes is 
reduced excessively, then classification performance can degrade to unacceptable levels. We have 
developed a new approach that uses a clustering approach to select the number of nodes and that 
performs an optimization step to select RBF parameters. Details of the approach can be found in [6]. 

A post-processing step refines MANN output by correcting manufacturing marks that have been 
incorrectly classified as defects. These marks appear as narrow vertical (edge to edge) discolorations 
caused by mineral oxidation or by metal deposition from conveyors or side chains. Elliptic shape 
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approximation is applied to each classified defect in order to identify vertical strips. Also, the post-
processing step resolves any uncertainty between holes and splits. 

4. Edging/Trimming Software 
After all board defects have been identified, data describing each defect and the board outline are 
recorded as ASCII text and passed to the application software, which searches for the best edging and 
trimming solution. In [13], Schmoldt et al. demonstrated that this search algorithm, a branch-and-
bound method, is superior in speed and accuracy to any other current edging/trimming software. In the 
branch-and-bound approach, the solution space is partitioned into four subsets (corresponding to the 
inward movement of the two edge lines and two trim lines), in a top down tree structure. Each of these 
subsets (subtrees) can be further partitioned as needed. For most boards only a few tree nodes are 
actually examined, most of the searching effort is consumed in generating the nodes themselves. 

5. Experimental Results 
Wane boundaries were manually delineated for two profile images. These ground-truth boundaries were compared to 

output from the wane detection method. One of the experiments is shown in Figure 3 and its statistical results are 
summarized in Table 1. Dotted lines in Figure 3a show the ground truth for the upper and lower wane boundaries, and the 
detected wane boundaries are depicted with solid lines. Figure 3b shows the absolute difference (in pixels) between the 
ground truth and the detected wane boundaries. Note that debris and residual bark, which are particularly apparent near 
columns 100 and 1000 for the upper part of the board, severely affected detection accuracy. Erroneous profiling also arises 
from laser intensity variation, which creates uneven profile information for level surfaces. This unevenness causes slightly 
higher average errors for the bottom edges (Table 1). Outliers are defined as detected wane boundaries that deviate more 
than 8 pixels (12.7 mm) from the ground truth boundary.  

Table 2 shows the performance of three different network topologies to classify clear wood, knots, and 
decay. Our MANN approach exhibits superior performance over single networks, RBFN and MLPN. 
We used 10-fold cross-validation to measure the performance in each case. 

Table 3 and Figure 4 show scanning system results, where solid red lines indicate edging/trimming 
solutions. In the first example, a red oak board (Figure 4a) contains a substantial amount of wane but 
few defects. It is graded as #1 Common valued at $2.34 (USD). For experimental purposes, we picked 
several low quality boards (Figure 4b-c) that contain many manufacturing marks. These marks 
originate from delayed chemical oxidizing of saw metal or from metal and dirt rubbing off of 
conveyors and other materials handling equipment. Nevertheless, the systems must deal with these 
anomolies. Our classification software largely ignores these marks, while identifying actual defects, 
but the system still needs to be improved, as shown on the right side of example OR005 (Figure 4b) 
and lower part of example OR008 (Figure 4c). 

The scanning system is controlled and operated by a 360 MHz Pentium II PC with 128MB 
memory. It has scanned 86 boards while testing its functional software components for classification 
and optimization. Classification and grading take up to 20 seconds depending on the number of defects 
contained in the board, and current scanning speed is set to 2 feet/second. Although varying the 
scanning speed is possible, it requires reconfiguration of the imaging camera, which will affect image 
quality. A normalization technique could be used to reduce image quality impacts for different 
configurations, but it is not feasible for the current system due internal electrical noise limitations of 
the imaging camera. 

30 Fifth International Conference on Image Processing and Scanning of Wood – Proceedings

Sang-Mook Lee, A. Lynn Abbott, Daniel L. Schmoldt, Philip A. Araman
A System for Optimal Edging and Trimming

of Rough Hardwood Lumber



2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

(a)

200 400 600 800 1000 1200
2
4
6
8

10
12
14

Absolute Error for Upper Wane Positions 

A
bs

ol
ut

e 
Er

ro
r 

200 400 600 800 1000 1200
2
4
6
8

10
12
14

Absolute Error for Lower Wane Positions 

A
bs

ol
ut

e 
Er

ro
r

x
(b)

Figure 3: Error analysis for sample board 1. (a) Dotted curve: true wane position. Solid curve: 
estimated wane position. (b) Absolute error for upper and lower edges of the board. For the upper 

edge, residual bark and debris cause several large deviations. For the lower edge, variations in 
reflected laser intensity are a major sources of error. 

Table 1. Error analysis for the wane detection method. Statistics for absolute error are given 
separately for the "upper" and "lower" edges of two unplaned boards. Average and standard deviation 

values are given in units of pixels, where each pixel represents 1.6 mm (1/16 inch). 

Sample Board 1 Sample Board 2 Surface Approximation 
Method Upper Lower Upper Lower 

Average (pixel) 2.3 3.5 1.6 2.0 
Std. Dev. (pixel) 3.0 2.0 1.4 2.9 

Outlier (%) 8.1 2.1 0.007 6.3 

Table 2. Performance comparison for various network topologies. There are 95 samples in each fold. 

Fold Number 

Network Type 1 2 3 4 5 6 7 8 9 10 Avg. Accuracy 
MANN 87 90 94 91 89 91 95 95 95 92 91.9 96.7% 
RBFN 82 84 87 89 85 89 91 92 90 92 88.1 92.7% 
MLPN 81 82 88 87 86 85 90 91 87 89 86.6 91.2% 
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Table 3. Summary of edging and trimming results for four example boards. 
 (Three of these boards are shown in Figure 4.) 

Board ID 
 OR023 OR005 OR001 OR008 

Size (Before Cut) 108�L x 9.75�W 95�L x 6.44�W 96.5�L x 7.38�W 97�L x 6.56�W 
Size (After Cut) 108�L x 4.5�W 95�L x 3.25�W 96.5�L x 6.75�W 97�L x 4.5�W 

Grade #1C #3C #2C #1C 
Value (USD) $2.34 $0.77 $1.84 $2.34 

(a)

(b)

(c)

Figure 4:  Three experimental results. The examples show that our classification software works well 
on typical situations in rough lumber, and that manufacturing marks are ignored while actual defects 
are labeled. Post-processing still needs improvement because there are some false classifications on 

the right side of example OR005 and the lower part of example OR008. 

OR008

OR023

OR005
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6. Conclusions 
The potential exists for dramatic efficiency improvements in hardwood sawmill operations, made 
possible by recent technological advances in imaging and computing technology. This paper has 
described a prototype system that partially addresses the problem of selecting optimal edging and 
trimming solutions. We have developed an integrated system of materials-handling hardware, image-
acquisition hardware, image-analysis software for detecting wane, knots, decay, and voids in rough 
lumber, and software to make optimal edging/trimming decisions. Knowledge of the locations of these 
lumber-degrading features, along with knowledge of grading rules and current market prices, are 
needed for the selection of optimum saw positions.  

The reason for targeting rough, unplaned lumber is that high-speed, computer-aided decisions made 
earlier in the production chain offer the greatest potential for economic gain. Rough lumber poses 
unique problems, however, because of the presence of fiber strands and saw marks that are not 
typically present after planing. This creates difficulties for defect recognition.

The scanning system uses a commercially available "smart camera" system, the MAPP 2200 [1], 
for image capture. This camera is unique in that it contains an on-board programmable processor to 
perform image processing operations in parallel with image capture. Low-cost solid-state lasers are 
used as illumination sources. These have been located in an effort to exploit the reflectance effect, in 
which light scatters within the fibrous material of the wood before being imaged. A standard PC serves 
as the host processor. The prototype system is relatively small, and can be moved into sawmills 
without extensive modification of existing facilities.  

Technological advances of the past few years have made this prototype system feasible at a 
relatively low cost. Ultimately, such a system will significantly improve the utilization of hardwoods 
by improving the quality of sawmill output and by reducing waste. A companion benefit is that each 
board processed by such a system will have a consistent computer grade, with less variation than is 
possible with human graders. 

Acknowledgments 
This work was partially supported by USDA Fund for Rural America Competitive Grant #97-36200-
5274.

References
[1] E. Åstrand, A. Åstrom, A Single Chip Multi-function Sensor System for Wood Inspection, In: Proceedings of the 

12th IAPR International Conference on Pattern Recognition, Vol. 3, Los Alamitos, CA, 1994, pp.300-304. 

[2] D. M. Bousquet, Saving Volume and Making Money at the Edger, Northern Logger and Timber Processor,
June, 1989. 

[3] T.-H. Cho, R. W. Conners, and P. A. Araman, A Computer Vision System for Automated Grading of Rough 
Hardwood Lumber Using a Knowledge-based Approach, In: Proceedings of the IEEE International Conference on 
Systems, Man, and Cybernetics, Los Angeles, CA, Nov. 4-7, 1990, pp. 345-350. 

[4] T.-H. Cho, R. W. Connors, and P. A. Araman, A Computer Vision System for Analyzing Images of Rough 
Hardwood Lumber, In: Proceedings of the Proceedings of the 10th International Conference on Pattern Recognition,
Atlantic City, NJ, IEEE Computer Society Press, Los Alamitos CA, June 16-21, 1990, vol. 1, pp. 726-728. 

Sang-Mook Lee, A. Lynn Abbott, Daniel L. Schmoldt, Philip A. Araman

33March 23 to 26, 2003 – Bad Waltersdorf, Austria, Europe

A System for Optimal Edging and Trimming
of Rough Hardwood Lumber



[5] R. W. Conners, T. H. Cho, and P. A. Araman, Automated Grading of Rough Hardwood Lumber, In: Proceedings of 
the 3rd International Conference on Scanning Technology in Sawmilling, R. Szymani (Ed.),  
Forest Industries/World Wood, San Francisco, CA, October 5-6, 1989, pp. XVI-1-15. 

[6] S. M. Lee, A. L. Abbott, and D. L. Schmoldt, A Modular Approach to Detection and Identification of Defects in 
Rough Lumber, In: Review of Progress in Quantitative Nondestructive Evaluation,
D. O. Thompson and D. E. Chimenti (Eds.) New York: Plenum Press, 2000, pp. 845-852. 

[7] S. M. Lee, A. L. Abbott, and D. L. Schmoldt, Wane Detection on Rough Lumber Using Surface Approximation, In: 
Proceedings of the 4th International Conference on Image Processing and Scanning of Wood,
D. E. Kline and A. L. Abbott (Eds.), USDA Forest Service, Southern Research Station,  
Asheville NC, 2000, pp. 115-126. 

[8] C. Regalado, D. E. Kline, and P. A. Araman, Optimum Edging and Trimming of Hardwood Lumber,  
Forest Products Journal 42(2): 1992, pp. 8-14. 

[9] J. F. Soest, and P. C. Matthews, Laser Scanning Technique for Defect Detection, In: Proceedings of the 1st 
International Conference on Scanning Technology in Sawmilling, R. Szymani (Ed.), 
Forest Industries/World Wood, San Francisco CA, October 10-11, 1985, pp. XVII-1-4. 

[10] E. Williston, Electronics in the Sawmill: Opportunities Areas and Leverage Points, In: Proceedings of the 
Proceedings of the Electronics Workshop, Sawmill and Plywood Clinic, Portland OR, 1979. 

[11] Y. J. Hou, Developing a Flexible Range Sensing System for Industrial Inspection Applications, M.S. Thesis, Bradley 
Dept. of Electrical Engineering, Virginia Tech, Blacksburg, VA, 1993. 

[12] N. Otsu, A Threshold Selection Method from Gray-level Histograms, IEEE Trans. on Systems, Man, and 
Cybernetics, vol. SMC-9, no. 1, 1979, pp. 62-66. 

[13] D. L. Schmoldt, H. Song and P. A. Araman, Real-time Value Optimization of Edging and Trimming Operations for 
Rough, Green Hardwood Lumber, In: Proceedings of ScanTech 2001, The Ninth International Conference on 
Scanning Technology and Process Optimization for the Wood Industry, 2001, pp. 87-100. 

[14] J. P. Besl, and R. C. Jain, Segmentation through Variable-order Surface Fitting,  IEEE Trans. Pattern Analysis and 
Machine Intelligence, vol. PAMI-10(2), 1988, pp. 167-192. 

[15] R. Hoffman, and A. K. Jain, Segmentation and Classification of Range Images, IEEE Trans. on Pattern Analysis and 
Machine Intelligence, vol. PAMI-9(5), 1987, pp. 608-620. 

[16] R. A. Jacobs, M. I. Jordan, and A. G. Barto, Task Decomposition through Competition in a Modular Connectionist 
Architecture: The What and Where Vision Tasks, Cognitive Science 15, 1991, pp. 219-250. 

[17] L. Bruzzone and D. F. Prieto, A Technique for the Selection of Kernel-function Parameters in RBF Neural Networks 
for Classification of Remote-sensing Images, IEEE Trans. on Geoscience and Remote Sensing,
vol. 37, no. 2, 1999, pp. 1179-1184. 

[18] S. M. Lee, A. L. Abbott, and D. L. Schmoldt, Using an Embedded-processor Camera for Surface Scanning of 
Unplaned Hardwood Lumber, In: Review of Progress in Quantitative Nondestructive Evaluation,
Thompson, D.O., and Chimenti, D.E. (Eds.), Montreal, Canada, 1999, vol. 19, pp. 1971-1977. 

34 Fifth International Conference on Image Processing and Scanning of Wood – Proceedings

Sang-Mook Lee, A. Lynn Abbott, Daniel L. Schmoldt, Philip A. Araman


