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Abstract

Over the last 10 years, scientists at the Thomas M. Brooks Forest Products Center, the

Bradley Department of Electrical and Computer Engineering, and the USDA Forest Service

have been working on lumber scanning systems that can accurately locate and identify defects

in hardwood lumber. Current R&D efforts are targeted toward developing automated lumber

grading technologies. The objective of this work is to evaluate hardwood lumber grading

accuracy based on current state-of-the-art multiple sensor scanning technology, which uses

laser profile detectors, color cameras, and an X-ray scanner. Eighty-nine red oak boards were

scanned and graded using Virginia Tech’s multiple sensor scanning system. The same boards

were also manually graded on a normal production line. Precise board grade was determined

by manually digitizing the boards for actual board defects. A certified National Hardwood

Lumber Association (NHLA) employed lumber inspector then graded the lumber to establish

a certified market value of the lumber. The lumber grading system was found to be 63%

accurate in classifying board grade on a board-by-board basis. While this accuracy may seem

low, the automated lumber grading system was found to be 31% more accurate than the line

graders, which were found to be 48% accurate. Further, the automated lumber grading system

estimated lumber value to within less than 6% of the NHLA certified value, whereas the line

grader overestimated the lumber value by close to 20%. Most automated lumber grading

discrepancies resulted from board geometry related issues (e.g. board crook, surface measure

rounding, calculation of cutting units, etc.). Concerning the multiple sensor scanning system,

defect recognition improvements should focus on better methods to differentiate surface

discoloration from critical grading defects. These results will help guide the development of
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future scanning hardware and image processing software to more accurately identify lumber

grading features.

# 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hardwood lumber is the primary material from which many high-value furnish-

ings are made, including finished floors, cabinets, furniture, millwork, and other

household products. Traditionally, the higher grades of preferred timber species (e.g.

oak, cherry, walnut, and yellow poplar) have been used by the wood products

industry. Consequently, woodworking equipment and the skills of the workforce in

this industry have been designed to process wood raw materials that were relatively

free from defects, easy to process, and inexpensive to waste. Recent price increases

along with a diminishing supply of high quality timber resources have resulted in the

production and utilization of lower grade material. The traditional processing

technology of this industry is not best suited to efficiently grade and process such

materials. Therefore, the wood products manufacturing industry must aggressively

explore innovative processes if they are to survive in an increasingly complex and

competitive environment.
The development of new processing technologies will require a sensing system that

can automatically inspect wood and accurately pinpoint critical features that affect

the quality of the final product. Many different sensing methods have been applied

to inspection of wood (Szymani and McDonald, 1981; Portala and Ciccotelli, 1992;

Ferrar, 1996) including optical, ultrasonic, microwave, nuclear magnetic resonance,

and X-ray sensing. These sensing methods have produced positive results in recent

years. More recently, research has shown that multiple sensor scanning techniques

provide a less ambiguous way to detect many of the features that affect the quality of

wood such as knots, decay, mineral streaks, and internal splits (Conners et al., 1997;

Bond et al., 1998). This research has been promising because relatively inexpensive

sensing and computer technologies are now available.

One highly sought after application of this technology is automated lumber

grading. These automated systems will include complex mechanisms including

cameras, lights, lasers, X-rays, computers, electronics and other devices necessary to

identify lumber grading features. Sophisticated computer software will be needed to

process the volume of information generated by the scanning hardware. The

resulting ‘‘digital map’’ of lumber defect data output by the software will be used to

automatically sort and grade lumber according to standard grading rules (e.g. 1998

NHLA hardwood lumber grading rules). However, this data can also provide a

potential wealth of information to dramatically reduce costs and increase value

recovery by creating a more intelligent, more adaptable manufacturing system.

To automate hardwood lumber grading, Virginia Tech and the Southern Research

Station of the USDA Forest Service have jointly developed and refined a multiple-
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sensor lumber scanning prototype (Conners et al., 1997; Kline et al., 1997, 1998) to

demonstrate and test applicable scanning technologies. This R&D effort has led to a

patented defect detection system for lumber (Conners et al., 1999). The objective of

this study is to test the accuracy of this defect detection system on hardwood lumber

grading. We will evaluate and discuss critical machine vision issues that must be

further addressed before this technology can be used as a commercially viable

application to automatic hardwood lumber grading.

2. Methods and materials

2.1. Scanning methods

To explore a number of wood products processing problems, recent research

efforts have gone into developing a full-scale multiple sensor machine vision
prototype. The system employs a color camera system, a laser-based ranging system

and an X-ray scanner (see Fig. 1). To meet the needs of multiple sensor data

acquisition and real-time image processing, special purpose hardware was also

developed and incorporated into the prototype (Conners et al., 1992; Drayer, 1997;

King, 1998; LaCasse, 2001). Scanning generates combined images with a cross board

resolution of 1.2 pixels/mm (30 pixels/in.) and a down board resolution of 0.63

pixels/mm (16 pixels/in.) at a linear conveyor speed of 0.6 m/s (2 ft/s). The greater

cross board resolution was found to aid in split detection, an important lumber
grading feature that requires greater resolution only in the cross board direction. The

color, range, and X-ray images were all calibrated to have identical spatial resolution

so that a pixel location on any image is referenced to exactly the same location on a

lumber specimen.

2.1.1. Color scanning

Color images were collected using a Pulnix TL-2600 RGB line scan camera with a

resolution of 864 pixels. The camera was mounted perpendicular to the wood
surface, and four linear Fostec fiber-optic light lines were used to illuminate the

surface of the lumber with a DC-regulated tungsten-halogen light source (Fostec

Type EKE). The Pulnix camera was fitted with two color-balancing filters (Schott

numbers FG-6 and BG-34). The camera light balance was calibrated using a

Spectralon 75% reflectance target. The three 8-bit color channels were individually

shade corrected with a linear function.

2.1.2. Laser range scanning

The laser-based ranging system uses a 30 mW helium�/neon gas laser with a 632.8
nm wavelength. A 24-facet polygon scan mirror, rotating at approximately 30 000

rpm, sweeps a point of laser light across the wood surface. The laser line image is

captured by two EG&G 128�/128 pixel array cameras at the rate of 384 frames per

s. Special-purpose hardware locates the displacement of the laser line in the collected

images and generates 7-bit range data. Through this process, the laser-based range
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scanner can measure board thickness variations in the wood surface to within 0.4

mm (1/64 in.).

2.1.3. X-ray scanning

The X-ray system employed an EG&G Astrophysics X-ray source with the
radiation energy set to 100 keV and 0.6 mA. The X-ray sensor was a 256-pixel line

array manufactured by FISCAN and generates 8-bit X-ray images. The X-ray

images are shade corrected using a linear function. The X-ray image contrast was

optimized by calibrating the minimum level (highest absorption) with a uniform

density (0.94 g/cm3) target of 45-mm thick polyethylene.

Fig. 1. The multiple sensor lumber scanning system hardware allows for the collection of six channels of

registered image data: (1) range, (2) red, (3) green, (4) blue, (5) black and white, and (6) X-ray. Each of

these channels of image data is processed in real-time using special purpose image processing hardware. A

special purpose PCI interface card transfers the data to computer memory for further processing.
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2.1.4. Image acquisition

Real-time processing hardware was developed at Virginia Tech (Drayer, 1997) to

simultaneously collect image data from each scanner with the same spatial resolution

(see Fig. 1). Five channels of image data are generated by the three scanners: (1)

range, (2) red, (3) green, (4) blue, and (5) X-ray. The collection of image data from

each scanner is synchronized using the same clock and then input into the processing

hardware. To minimize the computational requirements of the image-processing

computer, the processing hardware performs various real-time processing operations

such as image shade correction and filtering. The processing hardware also creates a

sixth channel of image intensity (black and white) data by averaging the red, green,

and blue color channels. The final operation of the processing hardware is the

transfer of six channels of spatially registered image data to memory of the image-

processing computer. The approximate bandwidth of this image acquisition

hardware is 2 Mb/s.

2.2. Image processing methods

The prototype machine vision system developed in this research is responsible for

processing the six channels of image data to locate and identify defects that can be

seen from the scanned lumber face. The final output of the machine vision system is a

‘‘defect map’’ that includes the size, location, and type of every defect. The machine

vision software developed in this research uses a novel data fusion approach to first

preprocess the images, segment the image into regions of interest, and then employ

fuzzy logic to determine the defect class to which the various regions belong. The

machine vision software architecture consists of three major processing modules: (1)

Fig. 2. Preprocessing, low-level, intermediate-level and high-level operations are applied to the image

data. The output of the laser-range image operations result in lumber geometry related defect

classifications. The output of the X-ray image operations result in density related defect classifications.

The output of the color image (e.g. red, green, blue, and black and white) operations result in surface

defect classifications.
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laser image analyzing module, (2) X-ray image processing module, and (3) color

image analyzing module (see Fig. 2).

2.2.1. Preprocessing

The purpose of image preprocessing is to provide higher quality images to the

computer vision system and reduce the time required to perform the image analysis.

The image preprocessing employed by this system includes the following operations:

background extraction, histogram extraction, and image registration. Background

extraction is used to detect the lumber edge in each of the three images. Histogram

extraction generates histograms for subsequent image thresholding operations.

Image registration is also treated as a preprocessing operation. Image registration

generally refers to any of the methods (e.g. geometrical transformations) used to
make the images from each sensor commensurate in both its spatial dimensions.

That is, for instance, pixel Ci,j in color image, pixel Li,j in the laser range image and

pixel Xi,j in the X-ray image refer to the same location (i, j) on the lumber surface. In

this system, the image edges are used as the corresponding reference objects for

image registration.

2.2.2. Low and intermediate processing

Low and intermediate processing consists of low-level segmentation, connected

component region labeling, and intermediate-level region feature extraction opera-

tions. Multiple thresholding operations are performed on all images to segment clear

wood from possible defect regions. For example, Fig. 3 shows a typical histogram of

an X-ray image with one large peak that represents the clear wood area, and two

smaller peaks. The smaller peak on the right of the large peak represents areas that
have a lower density. Similarly, the smaller peak on left of the large peak represents

areas that have a higher density. The inflection points are used to find the threshold

levels to separate pixels representing areas of clear wood with normal density from

pixels that might be in defect areas. Similar thresholding techniques are used for each

Fig. 3. An X-ray image intensity histogram. Inflection points between peaks are used to select multiple

threshold levels for the image.
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image modality. The average color intensity image is used for segmenting defect

areas rather than each of the red, green, and blue channels separately.

A connected component labeling operation is applied to the thresholded image to

form regions that contain possible defects. A four*/neighbor connected component

region*/labeling algorithm was developed in this system to extract regions from the

multiple thresholded image (Xiao, 2003). Similar adjacent regions (e.g. within 1 or 2

pixels) are merged if certain region properties match (e.g. average gray-level
intensity). Small disjoint regions (e.g. regions containing only 1 or 2 pixels) are

considered to be noise and are eliminated. At the intermediate level processing, basic

region properties such as area, shape, average gray levels, etc. are then extracted. It is

important to note that six spatially registered channels of image information provide

a rich source of data to extract useful region properties. Region properties are the

basis for classifying the various regions a particular grading defect during high-level

processing operations. Table 1 lists the region properties measured from each

channel of image information for each region identified during low level processing.

2.2.3. High-level processing

High-level processing operations are responsible for identifying which defect class

is assigned to candidate regions found in low- and intermediate-level processing (see
Fig. 4). A number of lumber defect identification rules have been developed in this

system. Each of these rules was designed to identify a particular defect class using a

fuzzy logic approach (Conners et al., 1999; Xiao, 2003). A rule is applied on every

suspect region and returns a similarity measure (approaching degree) between the

region and a specific defect class. The final decision is made based on the maximum

value of this measure. The region is identified as the defect class for which the value

of approaching degree is the largest and the value is greater than a threshold value

(e.g. 0.5). If all values of approaching degree are smaller than a specified threshold,
then the region is considered to be clear wood. All results are subsequently passed to

a post-processing module, which merges overlapping defects and filters defect

information based on user preferences (e.g. specify minimum allowable defect sizes

for a particular grading defect class).

In general, rules applied in this system have the following form:

If a region is

denser than clear wood, and

average gray level is darker than clear wood, and

redder than clear wood, and
round.

Then

the region is a knot with high confidence (e.g. CF�/0.95).

Else

the region is a knot with low confidence (e.g. CF�/0.05).

The above measures such as ‘‘denser’’, ‘‘darker’’, and ‘‘redder’’ are the basis for an

inexact descriptive vocabulary that was used to classify features. Since these
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Table 1

Region properties used for defect classification

Property Description 1 2 3 4 5 6

Intensity Normalized average region pixel intensity compared with normal (clear) wood X X X X X

Height Height of region X X X

Width Width of region X X X

Perimeter Number of pixels on the region boundary X X X

Area Number of pixels in the region area X X X

Edge Number of region pixels touching a board edge X X X

Center of mass Geometric mass center of region X X X

Compactness Measure of the compactness of a region X X X

Elongatedness Measure of the elongatedness of a region X X

X indicates which images are used to measure a particular feature for regions identified during low-level image processing (1, range; 2, red; 3, green; 4, blue; 5,

average color intensity; and 6, X-ray).
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measures are not crisp concepts, fuzzy logic is used in making rule evaluations.

Fuzzy membership functions used to define memberships in the fuzzy sets are of the

form shown in Fig. 5. The example shown in Fig. 5 is a fuzzy membership function

for the set defined by the fuzzy concept ‘‘denser than clear wood’’ for knots. Regions

having gray-levels that are significantly more attenuated (darker) than clear wood

(e.g. 45�/95%) would have high membership function values. This example member-

ship function was derived from frequency histograms of knot/clearwood training

samples for a particular wood species, in this case red oak. Any relative density

higher than 95% or lower than 45% would likely be associated with another defect

class, which have their own membership functions. This fuzzy logic approach was

found to be particularly useful in describing and managing the many overlapping

membership functions for different defect classes found in lumber.

Fig. 4. High-level processing operations are employed as a sequence of rules applied to each candidate

defect region identified in previous processing operations.

Fig. 5. The degree of membership function used to describe ‘‘denser’’. The percent relative densities

associated with red oak knots ranged from 45 to 95% more dense than clear wood. Membership functions

are approximated using an exponential function.
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2.2.4. System training

Parameters in this machine vision system were developed based on a limited set

(300 lumber samples) of dry surfaced red oak lumber. The system was trained to

recognize clear wood and the following defects in red oak lumber: (1) wane, (2) thin

board regions, (3) knot, (4) hole, (5) split, (6) mineral streak, (7) decay, (8) pin knots,

(9) worm holes, and (10) stain. This developmental sample of lumber was randomly

selected to provide at least 40 clear examples of each defect type to train the system.
The examples were selected by personnel from a cooperating forest products

company to be representative of the grading defects typically encountered in their

manufacturing process. Range, color, and X-ray images were collected for each of

these examples from which property measurements were made to train the system.

Training the system involved deriving membership functions (e.g. see Fig. 5) that

describe the observed variability of region features for each defect type. Frequency

histograms of observed region features (Table 1) were generated from defect

examples in the training set. Using the frequency histograms, membership functions
belonging to each of the ten defect types were constructed for each region property

and associated image indicated in Table 1. Further details of the software system

development and training can be found in Conners et al. (1999) and Xiao (2003).

2.3. Material selection

Eighty-nine (89) 4/4 red-oak lumber specimens were collected from various mills in

the Appalachian region. These boards were different than the sample used to develop

and train the system. The lumber was kiln-dried to within 5�/8% moisture content.

All boards were at least 2.1 m long and between 12 and 19 cm wide. The boards were

re-surfaced with an abrasive planer to remove any surface roughness, stain, or soil
and to create a uniform thickness prior to grading evaluation. National Hardwood

Lumber Association (NHLA, 1998) grades FAS, FAS 1-Face (F1F), #1 Common

(1C), #2 Common (2C), and #3A Common (3A) were used for the study. The

specimen grade mix consisted of 12 FAS boards, 8 F1F boards, 23 #1 Common

boards, 20 #2 boards, and 26 #3 Common boards for a total of 89 boards as graded

by mill line graders.

2.4. Evaluation methods

In testing the accuracy of the multiple-sensor defect detection system, the

following hardwood lumber grade evaluations were conducted. Comparisons were
made between each of these grade evaluations to develop conclusions about the

performance of the automated hardwood lumber grading system and where the

system could be improved.

1) Automated grade */each board sample was run through the lumber scanning

system to generate laser, X-ray, and color images for each board face. These

images were saved for subsequent processing and analysis. Subsequent proces-

sing utilized the processing software described earlier to automatically generate a
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‘‘digital map’’ of lumber grading defects in a standard format that can be used

by grading software. Hardwood lumber grading software, Ultimate Grading

and Remanufacturing System (UGRS), was used to grade each board based on

the generated digital map (Moody et al., 1998).

2) Digitized grade */the boards were manually digitized for all grading defects.

Digitization was done by hand and consisted of mapping out and classifying all

of the defects on the board according to the technique described by Anderson et
al. (1993). UGRS was used to establish the true grade of the lumber based on the

defects identified during manual digitization. Digitized grades are considered to

be ‘‘ground truth’’ for evaluating the accuracy of automated grading.

3) NHLA grade */the boards were graded by a NHLA employed certified

professional grader to establish the market grade and value of the lumber.

4) Line grade */the original grades of the boards, as graded by the line graders at

the various mills from which each board sample was collected.

3. Results and discussion

3.1. Grade distribution

Fig. 6 shows the grade distribution for each of the grade evaluation methods

studied. As expected, there is close agreement between the grade distributions for the

NHLA grade and digitized grade methods. Note that the digitized grade shows fewer

#1 Common grades than the NHLA grade. This discrepancy is partly due to extra

sensitivity of picking up more defects and slight lumber sidebend or crook in the

Fig. 6. Lumber grade distribution for each of the grade evaluation methods.
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digitization process. During digitization, there is much more time to consider every

possible feature and can result in a slight bias that is more critical of the board’s

appearance when compared with the NHLA inspector. Precise and consistent

definition of what constitutes a true grading defect will be key to developing an

effective automated lumber grading system. Future efforts will be needed to develop

such definitions that can be readily translated into computer code.

The line grade tends to place more boards in the higher grades compared with the
NHLA grade or digitized grade methods (see Fig. 5). Also note that the line grade

does not grade any boards as #3B Common (3B), a very low value grade. In

contrast, the automated grade method tends to place more boards in lower grades. It

was observed that some of the Face and better boards were downgraded to #1

Common and some #1 Common boards were downgraded to #2. This observation is

illustrated in Fig. 5 where the automated grade method resulted in the highest

frequency of #2 Common boards. A primary cause of this automated grade

discrepancy includes falsely detecting defects in the higher-grade lumber. This false
defect detection error and implications will be discussed in more detail later.

3.2. Board-by-board accuracy

Fig. 7 shows the board-by-board grading accuracy of the Automated lumber

grading system compared with the actual or digitized grade. The automated grade

correctly grades 56 boards, or 63% of the 89 board specimens studied. While this

grading accuracy may appear low, it compares favorably with the line grade, which

correctly grades only 43 boards, or 48% of the specimens (see Fig. 8). Note that this

board-by-board comparison is much stricter than the board distribution comparison

shown in Fig. 6 where some incorrectly downgraded boards are balanced with
incorrectly upgraded boards. The reasons for such board-by-board accuracy results

will be discussed in the next section.

3.3. Factors that limit automatic grading accuracy

Defining the ‘‘ground truth’’ or true grade of a board is a subjective process. For

example, verification procedures in this study found eight of the NHLA grade

Fig. 7. Confusion matrix of board-by-board grading accuracy for the automated lumber grading system.

The most critical classification error can be seen in the #2 Common grade. The automated grader

erroneously downgrades nine boards as #2, where seven should have been graded #1 and 2 should have

been graded 1-face and better.
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boards later reassigned a different grade by the same NHLA inspector. More

accurate consideration of board sidebend (crook) in grading calculations was the

primary reason why these eight boards were reassigned a different grade. Because of

such a discrepancy even with a certified grade, the method of using the digitized
grade for establishing ‘‘ground truth’’ was established. Furthermore, the automated

grading method uses UGRS, which employs a strict and literal interpretation of the

NHLA grading rules. As such, it is suggested that an evaluation procedure similar to

the Digitized grading method would be the least biased method of evaluation.

Nevertheless, establishing a completely unbiased ‘‘ground truth’’ for accurate

grading system testing and feedback is difficult. Regardless of any inherent bias

due to the subjective nature of identifying lumber defects, the following factors

contributed significantly to grading discrepancies and will require more careful and
precise definition for future research and development that will ensure a commer-

cially viable lumber grading technology.

3.3.1. Sidebend

Board sidebend or crook is the tendency of the board to bow in the side-to-side
direction. Any deviation in a board from a perfect straight line can have significant

impact on cutting yield. As such, board sidebend has an impact on the calculation of

the available clearwood cutting units used to assign board grade. Higher grades are

assigned to boards with higher cutting units relative to the total board surface area.

If sidebend is ignored, the calculation of available cutting units has the tendency to

increase. Since an automated system can make precise geometrical calculations, it

will tend to downgrade such boards when compared with human graders.

3.3.2. Surface measure

Surface measure is the total board surface area in square feet (0.093 m2) and is

calculated by multiplying board length by board width. Surface measure is rounded

to the nearest whole number. Differences in the surface measure can cause a grade

difference if the measurements for the surface measure calculations are off by even a
small amount. For example, the surface measure can be off by 1 unit (i.e. 1 ft2)

depending on how precise a human grader measures the width of the board.

Therefore, a larger or smaller surface measure estimate could possibly downgrade or

upgrade a board, respectively. This raises the question as to why there is a

discrepancy in the surface measures. The boards may be close to the borderline

Fig. 8. Confusion matrix for the line grader. The most critical classification error can be seen in the #3B or

below grade. The line grader erroneously upgrades 11 boards as #3A and 2 as #2.
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between two surface measures (i.e. 1/2 ft2), and a small misjudgment or rounding

may move the board to one surface measure or another. Since an automated system

can make precise length and width measurements, it would easily be able to handle

an area measurement system with much higher resolution than the existing manual

system.

3.3.3. Percentage of clear cutting units

In many cases, the percentage of available cutting units in a board relative to its

surface measure may be close to the borderline between two grades. For example, if

65% of the board’s surface measure is available for clear cutting units, it would be

graded as a #2 common. But it would be very close to a #1 Common, which requires

67% of the board’s surface measure. Making a critical grading feature smaller or

larger (say one quarter of an inch) can mean the difference between two grades in
such borderline cases. Since an automated grading system can make precise cutting

unit measurements and calculations, it would be easy to report available cutting

units along with board grade. Knowing the percent of the board that is available for

cutting would be valuable information when designating the optimum use of a

particular board.

3.3.4. Small defects, stain and mineral streak

Small defects such as pin knots and worm holes, stain and mineral streak are

sometimes difficult to detect at production speeds, or it may be subjective as to when

these feature types are considered a grading defect. These defects are oftentimes

detected by an automated grading system and included in the defect map as a critical

defect. In this study, stain or mineral streak was not included as a grading defect in

the UGRS graded boards. However, the most significant error observed in the

Automated lumber grading system was misclassification of certain stain and mineral
features as critical knot defects. This error is illustrated in Fig. 9 where a planer burn

mark in the wood is falsely detected as a set of knots. Since the system was not

trained to classify burn marks (or other innocuous surface discolorations), this

finding was not unexpected. Proper training of the system will require not only

examples of all possible grading defects, but also examples of other all the possible

wood features that are not considered a grading defect.

Fig. 9. Surface marks misclassified as critical grading defects.
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3.4. Lumber value

Table 2 shows the value of the 89-board sample based on each of the grade

evaluation methods. These values are based on the May 9 Hardwood Market Report

(2000). The line grade results in the highest value of $310 for the sample. This value is

20% higher than that estimated by the NHLA certified grade. The NHLA certified

grade is commonly used to settle disputes in lumber grading. In terms of lumber

value, the automated grade is closer to the NHLA grade than the line grade. While

the values between the NHLA and automated grade methods were within 6% from

each other, this difference is greater than the 4% money value allowance that is

required by the NHLA grading specification. Even the difference between the

NHLA and digitized grade methods is slightly greater than this 4% allowance at

4.6%. The main conclusion that can be drawn from these results is that precise

definition of what constitutes a grading defect in lumber is needed before the true

accuracy of automated lumber grading can be scientifically assessed.

3.5. Grading rough-green hardwood lumber

Fig. 9 illustrates how innocuous surface marks on dry surfaced lumber can

sometimes be confused with lumber grading defects. Such misclassification errors

will be an even greater problem for rough-green lumber where surface conditions can

vary widely. Fig. 10 illustrates this potential problem by showing a typical image of a

red oak board collected at a location in the hardwood lumber manufacturing process

where boards are typically graded. The board at this point in time contains black

sawmarks and a portion of the board surface has begun to dry creating a lighter

appearance. These conditions pose a significant challenge for automated lumber

grading systems. Further R&D will be needed to find the most appropriate scanning

Table 2

Value of the 89 boards for each of the grade evaluation method (May 9, 2000 Hardwood Market Report)

Evaluation method Value ($)

Line grade 310

NHLA certified grade 259

Digitized grade 247

Automated grade 244

Fig. 10. Surface marks present in rough-green red oak lumber.
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technology and develop the computer software that can see through such highly

variable ‘‘noise’’ that can be present in wood.

4. Conclusion

The development of machine lumber grading is a technology that can add

significant value to the products being produced by the hardwood lumber

manufacturing industry. The primary cost savings from such a system will be

realized by producing a more uniform and consistently graded product and by
producing a higher value product through optimum lumber remanufacturing.

Technology is now available to create such systems. However, adapting this

technology for lumber grading applications will take several years. Successfully

delivering such grading systems to the end user will depend upon a good

understanding by equipment manufacturers, mill managers, and operators alike

on the level of sophistication of technology and the associated learning curve that is

needed to handle an extremely variable material called ‘‘wood’’.

Using a multiple sensor lumber scanning system developed at Virginia Tech, a
preliminary automated lumber grading study was conducted on an 89-board sample

of dry surfaced red oak lumber. A lumber digitization procedure was developed to

establish lumber grade ‘‘ground truth’’. On both a board-by-board and lumber value

basis, the automated lumber grader was found to be more accurate and consistent

than line graders. Most automated lumber grading discrepancies resulted from

board geometry issues (board crook, surface measure rounding, calculation of

cutting units, etc.). As far as the lumber scanning technology is concerned, defect

recognition improvements should focus on better methods to differentiate surface
discoloration from critical grading defects. Accurate differentiation will be critical to

the success of machine grading systems in an actual manufacturing environment

where many innocuous surface discolorations can arise from material handling or

from the natural variation in wood. Concerning the definition of grading standards,

future work in new machine lumber grading standards will need to be developed that

precisely defines what lumber features are to be considered a ‘‘grading defect’’.
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