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ABSTRACT

Sorting and grading of wooden pallet parts are key factors for manufacturing quality and durable pallets. The
feasibility of ultrasonic scanning for defect detection and classification has been examined in this report.
Defects, such as sound and unsound knots, decay, bark pockets, wane, and holes were scanned on both red oak
(Quercus rubra, L.) and yellow-poplar (Liriodendron tulipifera, L.) pallet materials. Scanning was conducted
by two pressure-contact rolling transducers in a pitch-catch arrangement. Pallet parts, such as deckboards,
stringers, and cants were fed through the transducers, and data were collected, stored, and processed with soft-
ware written in the LabView™ environment. Defects were characterized on the basis of time of flight, pulse
energy, and pulse duration of the received ultrasonic signals. Significant losses of energies were observed
through these defects. Time of flight is less sensitive to defects compared to other parameters. This relative
change of parameter values, with respect to values for clear wood, can be used to locate, identify, and quanti-
fy various pallet part degrades. Two-dimensional images were constructed using multi-line scanning data. The
reconstructed images are able to show the position and surface area of the defects. Defects were classified
using a multi-layer perceptron (MLP), a probabilistic neural network (PNN), and a K-nearest neighbor (KNN)
classifier. Defective wood was classified quite clearly and accurately by all of these networks with high recog-
nition rates. Decay has a higher recognition rate than the other defects. Wane and holes were readily confused
owing to their common loss of transducer contact. The MLP were found to be more efficient for classifying
these defects. Results demonstrate that real-time, on-line inspection and classification of defects in wooden
pallet parts are possible by ultrasonic scanning.

INTRODUCTION

Approximately forty percent of the hardwoods produced in the United States are used for manufacturing pal-
lets. Wooden pallets are the largest single use of sawn hardwoods, consuming 4.5 billion board feet of lumber
for manufacturing 400 million pallets annually. Pallets are integral to the US transportation infrastructure, as
almost all products spend a part of their life on a pallet, either as component parts or following final assembly.
Typically, a wooden pallet consists of two parts-stingers, the structural center members that support the load,
and deckboards-the top and bottom members that provide dimensional stability and product placement. There
are many types of pallet designs based on the size, number, and position of the stringers and deckboards.
Usually, pallet parts are produced from the low quality lumber or from the center cant materials of logs. These
cants have a high percentage of defects, and therefore have less market value for other solid wood products.

High quality pallet parts produce higher grade and longer lasting pallets with increased material handling safe-
ty, and permit multiple trips before repair, recycling or remanufacturing. The presorting and optimized sawing
of cants can reduce processing cost and will produce higher grade pallet parts. Manual grading and sorting of
pallet parts is a slow and inaccurate process, which depends on the individual skill of the grader. Moreover,
the presence, location, and extent of defects in pallet parts are often difficult to determine accurately, making
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manual grading complicated. An automated, nondestructive machine would be very useful for pallet industry
for the sorting and grading of these pallet parts.

Detection and classification of defects in a pallet part is a challenging and complex task. Several nondestruc-
tive methods have been employed for detecting defects in wood, including X-ray, microwave, dielectric, opti-
cal, acoustic/ultrasonic, and laser (Szymani and McDonald 1981). Each of these methods has distinct advan-
tages and limitations. Ultrasonic scanning has many advantages-through transmission (able to scan inside of
the board/wood), faster, nondestructive and non-hazardous. The most common defects found in wood or pal-
let parts are sound and unsound knots, cross grain, decay, bark pockets, splits, holes, and wane. Many
researchers have investigated the feasibility of using ultrasound for detecting these defects in wood (McDonald
1980, Schmoldt et al. 1994, 1997, Ross et al. 1992, Fuller et al. 1996, Niemz et al. 1999, Raczkowski et al.
1999, Karsulovic et al. 2000).

The most common way of detecting defects using ultrasound is the measurement of transmission time through
clear and defective wood. The measurement of transmission time is useful when there is only a single type of
defect in a board. Some defect types may not respond well to the transmission time, but may respond to the
other ultrasonic parameters, e.g., peak amplitude, centroid time, frequency domain energy, etc. Recent studies
showed that the frequency domain analysis (Halabe et al. 1994, 1996) and energy loss (Brashaw et al. 2000,
Kabir et al. 2002) parameters are able to detect defects efficiently in wood.

The classification and recognition of defect types in a single sample is very difficult and complicated using
any automated scanning system. The changes in the measurement parameters for many of these defects are
similar, making classification systems difficult. Once we are able to detect, locate, and classify defects, grad-
ing of pallet parts is possible using established grading rules.

MATERIALS AND METHODS

The scanning equipment was provided by the former Ultrasonic Group, Forest Products Division of Perceptron
Inc. The system consists of in-feed and out-feed roll beds, two pinch rollers for part movement, and two rolling
transducers which are mounted in an ultrasonic ring. The bottom transducer transmits ultrasonic pulses and the
top transducer receives those pulses. Pallet parts move through the system, lying on a face, and ultrasonic sig-
nals propagate through the part’s thickness. The necessary electronics and software to control material move-
ment, signal generation, data collection, and analysis were supplied by Perceptron. The desired scanning res-
olution can be achieved by controlling roller speed and the number of pulses generated per second. All meas-
urements were carried out at 120 kHz transmitting frequency and received signals were sampled at 500 kHz.

Deckboards, stringers, and cants were collected from local sawmills for both yellow-poplar (Liriodendron
tulipifera, L.) and red oak (Quercus rubra, L.). They were fresh cut and unplaned, and were kept immediate-
ly in cold storage to reduce their drying rate and to keep their moisture content above fiber saturation point.
Twenty-five deckboards, eighteen stringers, and eight cants were scanned for each species. Each sample con-
tains both clear and defective wood and the scanning was conducted in two ways. First, a line was marked on
the board through a defect of interest and scanning was done along this line. Second, six scan lines were
marked longitudinally along the face of each sample 1.27 cm apart across the width of the board, and scanning
was performed along these six lines. These multi-line scans were used to characterize the entire deckboard and
to construct a 2-D image.

ULTRASONIC VARIABLES

The ultrasonic scanning involves measurement of many parameters-three for time-of flight, two for ultrasound
pulse energy, one using ultrasound pulse duration, and peak frequency. The wave energy of the received sig-
nal can be expressed as the time integral of the voltage:

(1)

Parameters include pulse length (PL), time of flight-centroid (TOF-centroid), time of flight- energy (TOF-
energy), time of flight-amplitude (TOF-amplitude), energy value, energy/pulse value, and peak frequency. The
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energy value (EV) or loss is expressed as the ratio of the energy received by the receiving transducer to the
energy input to the transmitting transducer, and is given by:

CLASSIFICATION OF DEFECTS

(2)

where Er is the energy received by the receiving transducer, Et is the energy input to the transmitting trans-
ducer, and G is the receiver gain. This parameter is normally expressed in decibels (dB) and by convention in
logarithmic (and hence a negative number) with lower signal ratios being more negative. The pulse length
parameter is derived from the integral expression above. This is defined as 1.25 times the time required for the
received wave energy to rise from 10 percent to 90 percent of its total energy and is expressed in microsec-
onds. These two parameters, energy value and pulse length can be combined to provide more defect resolu-
tion, known as energy/pulse value (EPV). Again, because of the wide range of energy levels, EPV is also
expressed on a logarithmic scale (dB)

Time of flight (TOF) measurement can be associated with the energy, amplitude, or centroid of the signal.
TOF-energy is calculated as the time at which the energy integral crosses a threshold value-as a percentage of
the final value. If the threshold value is, for instance, 40 percent, then TOF-energy is simply the time at which
the integral value reaches 40 percent of the final value. Similarly, TOF-amplitude is the time at which the
amplitude of the signal first reaches, for instance, 40 percent of the maximum amplitude. TOF-centroid is the
time to the centroid of the time waveform, which is based on the ratio of the first- and zeroth order moments.

Two artificial neural networks, multi-layer perceptron network (MLP) and probabilistic neural network (PNN),
and K-nearest neighbor (KNN) were used to classify defects. Theory and details of these classification meth-
ods can be found in Duda and Hart (1973), Specht (1990), Gonzales and Woods (1992) and Tiitta et al. (2001).
The classification methods were tested and compared by using training and testing for each set of data. For
classification with MLP and PNN, we created 10 groups of data using energy, pulse length, TOF-a, TOF-e,
TOF-c, EV, EPV and peak frequency. Each set of data contains all type of defects. Initially, each network was
trained with nine sets of data and the trained network was tested with 10th set of data. This method of train-
ing and testing was done ten times for 10 sets of data.

Artificial neural network (ANN) is one of the most commonly used network for pattern classification. The
ANN follows the behavior of the brain for pattern recognition, reorganization, and learning. Multi-layer
Perceptron (MLP) network, which consists of a large number of simple interconnected structurally identical
processing elements, was used for training and testing. The MLP network basically is a layer of neurons con-
nected so that the output of every neuron in one layer feeds into the input of every neuron in the next layer.
The inputs of each neuron are multiplied by its weights and then summed the result into a single value. The
neural network weights were adjusted using back-propagation supervised training to get the output very close
‘to the known target. Successive repetitions of adjustment were made to the weights until the difference
between the input and the target was smaller with each iteration. The output of each neuron can be calculated
after the value passes through a non-linear sigmoid function. An MLP network with 2 hidden layers is designed
for our classification purpose. The number of neurons in the hidden layers are 16 and 10, respectively.

Probabilistic Neural Networks (PNN) are a class of neural networks, which combine some of the best attrib-
utes of statistical pattern recognition and feed-forward neural networks. PNNs feature very fast training times
and produces outputs with Bayes posterior probabilities. The PNN is interpreted as a function, which approx-
imates the probability density of the underlying examples’ distribution. K-nearest neighbor classifier is a non-
parametric classifier. The training set for each class represents a class and the unknown pattern from the test-
ing set is classified by finding the nearest neighbors from the set of training patterns. Statistically, more reli-
able results can be achieved by using more than one nearest neighbor. The traditional k-nearest neighbor clas-
sifier finds the k nearest neighbors based on some distance metric by finding the distance of the target data
point from the training data set and finding the class from those nearest neighbors by some voting mechanism.
For the verification of the classifier, we used the leave-one-out method, in which a classifier is constructed
with all sample data except one and the excepted data is used to test the classifier. The leave-one-out method
repeats this process for every sample data.

30th Hardwood Symposium Proceedings 97 May 30 - June 1, 2002



RESULTS AND DISCUSSIONS

The collected ultrasound data in this experiment mostly was based on the time of flight, energy loss and peak
frequency measurements through clear and defective wood. The energy value (EV), time of flight-centroid
(TOF-c) and peak frequency (PF) of clear and defective wood of oak and yellow-poplar deckboards and
stringers are shown in Table 1. Defective wood, such as sound and unsound knots, decay, bark pockets and
holes can be clearly distinguished and identified from clear wood based on the values of different parameters.
The energy value parameter was found to be more sensitive for defect detection compared to TOF-c and PF.
The TOF-c increases slightly in the region of sound knots both for deckboards and stringers. The changes of
the EV relative to the clear wood value for unsound knots, decay, and bark pockets of oak deckboards are sim-
ilar. These three defects have common ultrasonic signatures and can be considered as unsound defects. Decay
and holes exhibited a higher PF, making this parameter can useful for distinguishing them from other defect
types. Low coefficient of variation (CV percent) for EV and PF suggested that the data collection repeatabili-
ty is acceptable, although a high CV percent was observed for TOF-c for some defect types in the deckboard
sample.

Table 1. Energy value (EV), time of flight-centroid (TOF-c), and peak frequency of clear and defective wood of oak and poplar deck-
boards and stringers (Coefficient of Variation in parenthesis).

Two-dimensional images were constructed using EV data from the multi-line scanning for deckboards,
stringers, and cants. The examples of the reconstructed images for oak cants are shown in Figure 1. The recon-
structed images are able to show the exact location and surface area of the defects. However, the reconstruct-
ed images are unable to identify defect type. The defects in the reconstructed images may a have greater sur-
face area than the actual defect, particularly the position of defect on both faces deviated from perpendicular
position, thus affecting ultrasonic signals. Also, grain deviation around the knot contributes a lot to the defect
characterization, which can be hard to ascertain visually on the board.

Defects were classified using multi-layer perceptron network (MLP), probabilistic neural network (PNN), and
K-nearest neighbor (KNN). Each time, the network was trained with eight ultrasonic parameter values for a
set of data and the testing was done with the other set of data. The most popular way of presenting the classi-
fication results is the “confusion table”, which is simply a correlation matrix. Six-class classification results
for poplar deckboards are shown in Table 2. Diagonal elements in the confusion matrix indicate correct clas-
sification results, while the other elements in the table are misclassifications. Similar results for oak stringers
are shown in Table 3. The recognition rate was calculated as a percentage of the correct classification to the
total number of data for each defect type. All three networks were able to classify defective wood efficiently
and the recognition rate was over 95 percent.
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Figure 1. Reconstructed images from the scanning data of EV and side view photos of the board- oak stringer (a), oak cant (b and c).
(a)

(b)

(c)
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Table 2. The confusion table displays the number of correct and misclassified elements for MLP, PNN, and KNN classifiers using
poplar deckboard data. Correct classification appears on the diagonal.

Defects Clear Sound Unsound Decay Bark Wane Total Corr.
Knot Knot Pocket Classif. (%)

Clear MLP 138 4 2 1 0 0 145 95.2
PNN 138 5 1 1 0 0 145 95.2
KNN 145 0 0 0 0 0 145 95.2

Sound MLP 1 16 3 0 1 0 21 76.2
Knot PNN 1 15 5 0 0 0 21 71.4

KNN 2 15 4 0 0 0 21 71.4

Unsound MLP 0 2 20 1 4 2 29 70.0
Knot PNN 1 3 19 2 2 2 29 65.5

KNN 0 5 20 4 0 0 29 70.0

Decay MLP 0 2 1 40 1 6 50 80.0
PNN 3 1 2 34 4 6 50 68.0
KNN 0 1 4 41 0 4 50 82.0

Bark MLP 0 0 1 1 9 2 13 69.2
Pocket PNN 0 0 2 2 8 1 13 61.5

KNN 0 0 1 2 7 4 13 53.8

Wane MLP 0 0 1 5 7
PNN 0 0 2 4 8
KNN 0 0 2 4 6

The overall recognition: MLP = 84.2, PNN = 80.9, and KNN = 86.2

33 46 71.7
32 46 69.6
34 46 73.9

Sound and unsound knots can be classified properly using all of these networks, although the recognition rate
in sound knots is little higher than unsound knot (Table 2). Some of the data for sound knots are misclassified
as clear wood and unsound knots, whereas data of unsound knots were misclassified as sound knots and decay.
This seems reasonable since unsound knots might have associated decay or splits, or are completely integrat-
ed with surrounding wood, leading to the misclassification. Decay was found to be classified efficiently with
a high recognition rate using MLP, PNN, and KNN both for deckboards and stringers (Tables 2 and 3). The
misclassification of decay mostly lies with holes and wane, since decay may have some void or fiber separa-
tion. Bark pockets showed lower recognition rates compare to decay and were misclassified as sound and
unsound knots. Bark pockets, which are basically the inclusion of bark into wood, interrupt the continuity of
the grain and may behave as sound and unsound knots. Wane is confused fairly equally among decay, bark
pockets, and holes. This is expected since wane is the absence of wood, and the transducers can lose contact
and generate very low energy signals, similar in value to decay, holes, and bark pockets.

The overall recognition rate, which is a percentage of the total correctly classified data to the total number of
data, presented at the bottom of Tables 2 & 3 for each classifier. The classifier MLP and KNN have higher
overall recognition rates than PNN for deckboards and stringers. The MLP was found to be the most suitable
for classifying these defects. Similar results were also reported for MLP and KNN by Tiitta et al. (2001),
although classifying several defect types in a single board is more complicated than classifying the degree of
severity in a single defect. Usually, MLP provides very good results if it is correctly used or when the level of
learning or network size is suitable. Whereas, the KNN classifier is non parametric and obviously the easiest
to use and works quite well with linear or nonlinear data.
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Table 3. The confusion table displays the number of correct and misclassified elements for MLP, PNN, and KNN classifiers using oak
stringer data. Correct classification appears on the diagonal.

Defects Clear Sound Unsound Decay Bark Wane Hole Total Corr.
Knot Knot Pocket Classif.(%)

Clear MLP 69 1 0 1 1 0 0 72 95.8
PNN 70 2 0 0 0 0 0 72 97.2
KNN 72 0 0 0 0 0 0 72 100.0

Sound MLP 3 22 2 0 2 0 0 29 75.9
Knot PNN 2 20 2 0 5 0 0 29 70.0

KNN 2 21 3 0 4 0 0 29 72.4

U n s o u n d  M L P  0 6 14 0 4 0 0 24 58.3
Knot PNN 2 5 12 0 5 0 0 24 50.0

KNN 0 5 16 0 3 0 0 24 66.7

Decay MLP 0 1 0 55 1 1 4 62 88.7
PNN 0 0 0 49 1 0 12 62 79.0
KNN 0 0 0 51 1 1 9 62 82.3

Bark MLP 2 3 5 2 24 1 0 37 64.9
Pocket PNN 1 6 6 1 22 0 1 37 59.5

KNN 1 6 8 0 21 0 1 37 56.8

Wane MLP 0 0 0 2 2 11 7 20 55.0
PNN 0 0 0 3 2 12 3 20 60.0
KNN 0 0 1 2 2 11 4 20 55.0

Hole MLP 0 0 0 4 1 10 30 45 66.7
PNN 0 0 0 2 0 12 31 45 68.9
KNN 0 0 0 6 0 14 25 45 55.6

The overall recognition : MLP=77.9, PNN=74.8, and KNN=75.1

CONCLUS IONS

Energy related parameter was found to be more sensitive to sound and unsound knots, decay, bark pockets, and
hole for oak and yellow-poplar deckboards and stringers. Because all defect types present a transmission medi-
um that is different from clear wood, there is a large loss of energy at the interface. Unsound knots, decay, and
bark pockets have shown similar energy loss for deckboards. The TOF measurements, however, were not
found to be very effective at discriminating defects. PF can be used as an effective tool for discriminating
decay and holes.

The multi-layer perceptron (MLP), probabilistic neural network (PNN), and k-nearest neighbor (KNN) were
found to be suitable for classifying sound and unsound knots, decay, bark pockets, wane, and holes for both
deckboards and stringers. All these classifier networks are able to distinguish defective wood from clear wood
with high recognition rate. A few sound knots were misclassified as clear wood or unsound knots. Decay can
be classified more accurately than the other defects and bark pockets were misclassified as decay and holes.
Wane and holes have similar ultrasonic characteristics and misclassification usually occurred with decay and
bark pockets. The MLP showed the highest overall recognition rate for classifying these defects. Two-dimen-
sional reconstructed images were able to provide the exact location and surface area of the defects.

This study suggested that sorting and grading of pallet parts are possible using on-line ultrasonic scanning. The
unsound defect volume in cants can be determined using reconstructed images, and thus, optimized sawing
practices can increase the value of material obtained from cants.
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