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Abstract. This paper is concerned with the detection of internal defects in hardwood logs. Because
the commercial value of hardwood lumber is directly related to the quantity, type, and location of
defects in the wood, sawing strategies are typically chosen in an attempt to minimize the defects in
the resulting boards. Traditionally, the sawyer makes sawing decisions by visually examining the
exterior of log and then revising the sawing strategy as more and more of the log's interior is
exposed. Significantly better results would be expected if internal defects were known, so that a
globally optimum solution could be selected in advance. This paper addresses this problem through
the analysis of computed tomography (CT) images of logs, for the purpose of detecting important
hardwood defects. In particular, the paper considers defect-dependent postprocessing methods,
based on mathematical morphology, that show promising results.

INTRODUCTION
Increasing prices and limited forest resources continue to drive the hardwood industry to

seek more productive means of converting logs to lumber. Conventional log sawing
practices waste considerable amounts of valuable wood, largely because most defects that
adversely affect board quality are at unknown locations inside the logs. Studies have
shown, for example, that the commercial value of lumber can be improved by 11% to 21%
through the careful selection of sawing strategies, particularly if internal defect locations
were known [1-3].

Previous studies have demonstrated the ability to detect important internal defects
through the analysis of computed tomography (CT) images of logs. For example, some
early studies are presented in [4-6]. Zhu et al. [7] described a segmentation approach that
relied heavily on edge and texture measures. Bhandarkar et al. [8] described an correlation-
based approach to defect detection. Schmoldt et al. [9-11] described an approach that used
artificial neural nets (ANN) to classify pixels individually, using small neighborhoods of
CT density values as input feature vectors.

In general, the problem is difficult because of the inherently variability of wood.
Although much of the work reported above has yielded results that are good in a
quantitative sense, subjective evaluation suggests that the results could be improved in a
qualitative sense by refining the resulting shapes and extent of detected defect regions in the
images. For example, small spurious defect regions may have only a small effect on pixel-
wise statistical classification accuracy, but are objectionable to the human observer. In
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many cases, such regions can be identified and eliminated easily. The goal of this paper is
to describe recent attempts accomplish this. (See also the related work that is described in
[12].)

Initial classification is performed using local neighborhoods of CT density values. These
serve as input values to an ANN, which assigns a label ("knot," "decay," "split", "bark," or
"clear wood") to each pixel in the image. The postprocessing module that is described here
uses higher-level, domain-dependent knowledge to refine initial classification results.
There are several motivations for such an approach. First, the initial ANN-based classifier
depends primarily on information from very small image neighborhoods, and identifies
defects on a pixel-by-pixel basis. It therefore ignores such information such as defect
shape, size, and position within the log. Second, the rule-based postprocessing approach
that we describe here can employ fundamentally different types of rules for different
defects, whereas the ANN approach that we use is restricted to a single topology for all
classes that it can identify.

The next section of this paper presents a system overview. Because the postprocessing
system depends heavily on mathematical morphology, some fundamental definitions of
mathematical morphology are given in the section that follows. The next two sections
provide example postprocessing results for two defect types, bark and splits. The merging
of separate postprocessing results is then discussed, and the last section presents concluding
remarks.

SYSTEM OVERVIEW
The overall classification system consists of three modules: (1) a preprocessing module,

(2) an artificial neural network (ANN) module that assigns tentative labels, and (3) a
postprocessing module which is the primary topic of this paper. The preprocessing module
distinguishes wood from background (air) and internal voids, and normalizes CT density
values. The ANN module labels each non-background pixel of a CT slice using histogram-
normalized values from small windows of size 3x3x3 or 5x5, centered on pixel location to
be classified. In the postprocessing module, morphological operations are preformed to
remove spurious regions and refine region shapes. Individual region types are considered
individually, and are then merged to form a single segmented image.

MATHEMATICAL MORPHOLOGY BASICS
Mathematical morphology, also known as image algebra, is the study of shape or form

using the tools of set theory [13-15]. Mathematical morphology operations can be used to
modify image shapes, reduce noise, and detect features of interest.

In this paper, we consider only binary images and binary morphology. In this case, only
two different pixel values are possible, often called "foreground" and "background" levels.
It is possible to represent a binary image as a set of (row, column) coordinate locations for
all of the foreground points. Most morphology operations involve a structuring element,
which is another set of (row, column) pairs. The structuring element is typically quite
small, and its shape has a direct impact on the results.

In the following discussion, it will be convenient to use subscript notation to represent
the translation of a set:

(A)x={a + x\aeA}. (1)
Two fundamental operations of mathematical morphology are dilation and erosion.
Intuitively, these operations tend to enlarge and reduce (respectively) the sizes of
foreground regions in images. Let set A represent a binary image, and let B represent a
structuring element. A definition of dilation is

1937



(2)
and a definition of erosion is

AQB = {X\(B)X^A] (3)
The successive application of these two operations is common. The morphological opening
of A by B is defined as

AoB = (A&B)®B (4)
and closing is given by

A^B = (A®B)eB (5)
A few other terms will also be needed later in the paper. The complement of a set can be

written as
Ac = {x\x£A] (6)

The Minkowski difference of two sets A and B is defined as
A\B = {x\ JCG Aand jcg#}=An£ c (7)

REFINEMENT OF BARK REGIONS
In order to show how domain-dependent rules can be developed and applied, we begin

with an example concerning bark. Because the density of bark is very close to that of clear
wood, the ANN can confuse the two types relatively easily. In this application, it is
reasonably to assume that bark should lie on the outside of a log. (We ignore the case of
included bark for the present.) It is therefore possible to state this simple rule: Retain only
those bark regions in the image that lie at the outer boundary of the log. The high-level
processing strategy is first to determine which points lie on the outside edge of the log, and
then to retain only those bark regions that overlap one or more boundary points.

Let us first consider morphological postprocessing operations that can be used to obtain
the boundary, as shown in Fig. 1. Fig. l(a) shows an image of a red oak log that has lost
most of its bark, except for the upper right and lower left portions of the image. A binary
log image, in which dark foreground points represent the log, is shown in Figure l(b). This
binary image is dilated using a 3 x 3 structuring element, and points associated with Fig.
l(b) are removed from the dilated version. The result is a representation of the log's
boundary, as shown in Fig. l(c), and will be used in subsequent processing. Algebraically,
the procedure can be written as

C = (A0£)\A (8)
where A is the binary log image, B is the structuring element, and C is the result. Notice
that the structuring element can be expressed formally as B = {(-1, -1), (-1, 0), (-1, 1),
(0, -1), (0, 0), (0, !),(!, -1), (1, 0), (1, 1)}. Dilation by this structuring element causes A to
be enlarged by one ixel in every direction._________

(b)
Figure 1. Postprocessing example for bark, (a) CT image slice of red oak log.
associated with the log. (c) The detected outside boundary of the log.

(c)
(b) Foreground points
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The next step is to eliminate bark regions detected by the ANN that do not touch the
boundary. Initial bark regions for this image, as labeled by the ANN, are shown in Fig.
2(a). In this example, several small regions have been incorrectly labeled as bark, and a
fairly large region near the top has also been incorrectly labeled. We first apply
morphological opening to the initial bark region, using the same structuring element that is
used in the extraction of the log's boundary. This removes small "necks" that connect
larger regions, smoothes region boundaries, and additionally removes some of the smaller
regions from further consideration. The result is shown in Fig. 2(b). To this image we
apply conditional dilation. This is an iterative procedure that retains only those regions that
are designated initially using marker points. In our case all foreground points in the
boundary image C (Fig. l(c)) are employed as marker points. C is repeatedly dilated using
the 3x3 structuring element B, but at every iteration the intermediate result is intersected
with the bark image given in Fig. 2(b). We designate this input bark image as Ibark, and it
serves formally as a "mask" image for the conditional dilation. The conditional dilation can
be expressed as

rMbark (9)
where the superscript (/) represents the repetition index. The dilations and intersections
continue until no change occurs; i.e., (C © 5)(/) n Ibark = (C © Bf+l} n Ibark. The result of
this is shown in Fig. 2(c). The postprocessing steps for bark are summarized in the diagram
of Fig. 3.____________

(a) (b) (c)
Figure 2. Continued processing for bark, (a) Bark image. The dark points represent bark, as tentatively
identified by the ANN. (b) The result of morphological opening, (c) The result after removing regions not on
the boundary of the log.

1f
Morphological

opening to remove
necks between

regions

t* Marker Image

- ——————— >rOutside boundary of log

Conditional dilation
to remove bark

regions not at log
border

1r

Figure 3. Postprocessing of bark regions. Relatively simple morphological processing leads to significantly
improved results for the example shown.
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REFINEMENT OF SPLIT REGIONS
A split is a longitudinal and radial separation of the wood, due to the tearing apart of

wood cells. Postprocessing operations can be selected to take advantage of the narrow,
elongated shapes that are expected of split regions.

The flowchart procedure for this is given in Fig. 4. First, a majority filter is applied to
partially eliminate problems due to annual rings. The majority algorithm considers the 9
pixels within each 3x3 neighborhood. Because pixels can have only foreground or
background values, more than half of the 9 pixels must have one of these two values. That
value replaces the value at the center pixel. Next, morphology operations are employed to
extract a skeleton of each region. A skeleton is a thinned representation of a region that
retains information associated with its original size, orientation, and connectivity.
Lantuejoul showed that the skeleton of a binary image A could be expressed in terms of
morphological erosions and openings [16]. With S(A) denoting the skeleton of A, it can be
shown that

= \JSk(A)

with

(10)

(11)

where B is a structuring element, (A0&5) indicates k successive erosions of A, and K is the
number of steps before A erodes to an empty set:

K = max {k | (AekB) * 0} . (12)
The skeletonization procedure will typically produce a thinned image in which some small,
spurious regions remain. We now remove these, eliminating all regions having an area that
is smaller than an empirically chosen threshold.

Because splits are very narrow, they are often difficult to detect in CT images. Because
of this, splits are often detected by the ANN as separate regions that need to be linked. For
the case that 2 or more split regions are present, we now apply a linking step that searches
for skeleton endpoints that lie in close proximity. If the distance is sufficiently small
between any two endpoints from different skeletons, then these two endpoints are joined by
a straight line.

It is relatively simple to find the endpoints of skeletons, using morphological hit-or-miss
operations [17] with the different templates depicted in Fig. 5. Each template represents a
particular type of endpoint configuration to be matched in the image.

After linking nearby skeletons, we refine the resulting regions by applying a
morphological pruning algorithm to remove small, spurious branches. Conceptually, this is
accomplished by repeatedly detecting skeleton endpoints and removing those endpoints.
However, if this is performed directly, the main branches of the skeletons will be shortened
as the small spurs are removed. To avoid this problem, we have adopted a skeleton filtering
procedure introduced by Soille [17]. With this technique, spurious branches are removed
without shortening the main branches that represent splits.

Figure 4. Postprocessing procedure for split regions. Because splits are often very narrow, they can be
difficult to detect in CT images.
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Figure 5. Structuring elements for endpoint detection. Each grid of 9 points represents a pair of structuring
elements. In each case, the dark cells represent the set of foreground pixels, and the white cells represent the
set of background pixels.

A typical example of split postprocessing is shown in Fig. 6. The CT image in Fig. 6a is
used for ANN classification. The output of the ANN classifier is shown in Fig. 6b. The
majority-filtering algorithm eliminates most annual rings (Fig. 6c), and skeletonization
thins all of the resulting regions to 1-pixel widths (Fig. 6d). Small regions are then
removed (Fig. 6e), and the remaining connected components are linked (Fig. 6f). Finally,
most spurious branches are removed from the resulting split region, while keeping the main
branch unchanged (Fig. 6g). In this case, the result is not perfect; a connected side split
(barely visible at the 2 o'clock position in the image) is eventually eliminated by these
steps. It is a sub-pixel resolution split that is difficult even for the human eye to detect.

MERGING THE RESULTS
After postprocessing the individual layers separately (knots, splits, bark, and decay, and

clear wood), we need to combine all separated layers into a final image.

(b) (c) (d)

(e) (g)
Figure 6. Postprocessing of split regions, (a) Example of red oak image with prominent split, (b) Split
pixels, as tentatively assigned by the ANN. (c) The result of majority filtering algorithm, (d) Result of
skeletonization. (e) Result of spurious object removal, (f) Result of branch linking, (g) Result of final
skeleton filtering.
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Table 1. Precedence rules to resolve pairs of overlapping labels. The unshaded labels in the table represent
the "winners" for cases that two labels (one shaded label from the left, and one shaded label from the bottom)
have been assigned to a single pixel._______

Knot
Split

Decay
Bark

Split
Knot
Bark

Split
Bark Bark

(Because of page limitations, we do not discuss the postprocessing of other defects here.)
However, some defect regions will have grown, causing some regions from different layers
to overlap. To resolve those overlaps, we have developed precedence rules (Table 1) to
resolve conflicts when a pixel is assigned different labels by separate postprocessing steps.
For example, the region-filling algorithm that is applied to clear wood will create overlaps
with knot regions. Because it is important to distinguish knots, we give those regions
preference over clear wood regions. Whenever clear wood overlaps another defect type,
clear wood surrenders its pixel label at that specific point. Because splits and decay can
appear inside of knots, they are given precedence over knots whenever a conflict occurs.
Included bark has not been addressed by the current system, so bark assumes the highest
precedence.

An example of merging the result is shown in Fig. 7. Using the original image given in
Fig. la, the background is detected and an ANN assigns tentative labels, as shown in Fig.
7b. Morphological postprocessing is conducted separately for each label type. The
individual results are combined in Fig. 7c. Subjectively, postprocessing results in a
considerable improvement for this example.

DISCUSSION AND CONCLUSION
Artificial neural networks have been proven to give good results statistically for several

defect types and for several species of hardwood. However, spurious pixel
misclassifications often remain from ANN labeling, largely because our implementation
heavily emphasizes local information. To correct for this, we have begun to develop a
postprocessing methodology that is rule-based, applying refinement steps that are tailored
to the individual types of defect. Because much of the refinement is related to region shape,
the tools of mathematical morphology have been particularly effective in our experiments.
Our current results with knots, bark, and split regions demonstrate impressive visual
successes. These results need to be validated quantitatively, however, in future work.
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Figure 7. Example to illustrate the improvements that can result from postprocessing, (a) Original CT image,
repeated from Figure la. (b) Initial labels assigned by ANN. (c) Combined result of postprocessing. The split
near the center has been enlarged slightly (by morphological dilation) to make it easier to see.
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