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Abstract 

This paper deals with automated detection and identification of internal defects in hardwood logs 
using computed tomography (CT) images.  We have developed a system that employs artificial neural 
networks to perform tentative classification of logs on a pixel-by-pixel basis.  This approach achieves a 
high level of classification accuracy for several hardwood species (northern red oak, Quercus rubra, L., 
water oak, Q. nigra, L., yellow poplar, Liriodendron tulipifera, L., and black cherry, Prunus serotina, 
Ehrh.), and three common defect types (knots, splits, and decay).  Although the results are very 
satisfactory statistically, a subjective examination reveals situations that could be refined in a subsequent 
post-processing step.  We are currently developing a rule-based approach to region refinement to augment 
the initial emphasis on local information.  The resulting rules are domain dependent, utilizing information 
that depends on region shape and type of defect.  For example, splits tend to be long and narrow, and this 
knowledge can be used to merge smaller, disjoint regions that have tentatively been labeled as splits.  
Similarly, image regions that represent knots, decay, and clear wood can be refined by removing small, 
spurious points and by smoothing the boundaries of these regions.  Mathematical morphology operators 
can be used for most of these tasks.  This paper provides details concerning the domain-dependent rules 
by which morphology operators are chosen, and for merging results from different operations. 
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Introduction 

The commercial value of hardwood lumber is inversely related to the quantity and sizes of defects 
that are present.  For this reason, each log should be sawn so that defects are reduced in the resulting 
boards.  Traditionally, however, saw operators convert logs to boards using only visible cues from log 
surfaces.  Without complete knowledge of internal defect types and locations, it is not possible to improve 
log breakdown significantly. 

Computed tomography (CT) scanning has been studied as a means of providing internal defect 
information (e.g., Benson-Coopers et al. 1982, Hopkins et al. 1982, Cown and Clement 1983, Taylor et 
al. 1984, Burgess 1985, Birkeland and Holoyen 1987, Chang et al. 1989, Wagner et al. 1989, Hodges et 
al. 1990, Harless et al. 1991, Occeña 1991, Davis and Wells 1992,  Grönlund 1992, Grundberg and 
Grönlund 1992, Zhu 1993, Schmoldt 1996).  Researchers have employed a variety of methods to detect 
and identify defects in CT images.  For example, several studies have shown good results using artificial 
neural network (ANN) classifiers (Li et al. 1996, Schmoldt et al. 1997, Schmoldt et al. 2000).  However, 
the problem is difficult because of the inherently variability of wood, and complete success has not yet 
been achieved. 

This paper reports work that is in progress to improve the results that are produced by an existing 
defect-detection system.  Initial classification is performed using local neighborhoods of CT density 
values.  These serve as input values to an ANN, which assigns a label (“knot,” “decay,” “split”, “bark,” or 
“clear wood”) to each pixel in the image.  The post-processing module that is described here uses higher-
level, domain-dependent knowledge to refine initial classification results.  There are several motivations 
for such an approach.  First, the initial ANN-based classifier depends primarily on information from very 
small image neighborhoods, and identifies defects on a pixel-by-pixel basis.  It therefore ignores such 
information such as defect shape, size, and position within the log.  Second, the rule-based post-
processing approach that we describe here can employ fundamentally different types of rules for different 
defects, whereas the ANN approach that we use is restricted to a single topology for all classes that it can 
identify.  Finally, in some cases the ANN classifier yields results that are very good in a statistical sense, 
but a subjective evaluation reveals a need for additional refinement.  For example, small spurious defect 
regions may have only a small effect on pixel-wise statistical classification accuracy, but are 
objectionable to the human observer.  In many cases, such regions can be identified and eliminated easily. 

The refined system depends heavily on the tools of mathematical morphology for post-processing.  
The basics of this are briefly presented in the next section of this paper.  As shown in Figure 1, which 
illustrates the overall post-processing approach, different operations are applied to the different defect 
types that are detected by the ANN.  The next 3 sections of this paper illustrate the application of 
morphology operators to the refinement of bark, knot, and split regions, respectively.  The last sections 
briefly describe the refinement of other region types, and the integration of all post-processing results.   

Overview of mathematical morphology 

Mathematical morphology, also known as image algebra, is the study of shape or form using the 
concepts of set theory (Matheron 1975, Serra 1982, Haralick 1987).  Mathematical morphology 
operations can be used to modify image shapes, reduce noise, and detect features of interest.   

In this paper, we consider only binary images and binary morphology.  In this case, only two different 
pixel values are possible, often called “foreground” and “background” levels.  It is possible to represent a 
binary image as a set of (row, column) coordinate locations for all of the foreground points.  Most 
morphology operations involve a structuring element, which is another set of (row, column) pairs.  The 
structuring element is typically quite small, and its shape has a direct impact on the results.   
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Figure 1.  Overview of rule-based post-processing approach.  An artificial neural network assigns 
tentative labels to all wood pixels in a CT image.  Each set of labels can be treated as a separate binary 
image, to be processed independently using morphological transformations.  The individual results are 
merged to produce the final result. 

In the following discussion, it will be convenient to use subscript notation to represent the translation 
of a set: 

A( )x = a + x  a ∈A{ } .                                                             (1) 

Two fundamental operations of mathematical morphology are dilation and erosion.  Intuitively, these 
operations tend to enlarge and reduce (respectively) the sizes of foreground regions in images.  Let set A 
represent a binary image, and let B represent a structuring element.  A definition of dilation is  

A ⊕ B = a + b a ∈A and b ∈B{ }                                                     (2) 

and a definition of erosion is 

AΘB = x B( )x ⊆ A{ }  .                                                            (3) 

The successive application of these two operations is common.  The morphological opening of A by B is 
defined as  

  A o B = AΘB( )⊕ B                                                                  (4) 

and closing is given by 

A • B = A ⊕ B( )ΘB  .                                                                (5) 

A few other terms will also be needed later in the paper.  The complement of a set can be written as 

AC = x x ∉A{ }  .                                                                  (6) 

The reflection of B, denoted ˆ B , is defined as 

ˆ B = x x = −b,b ∈B{ }  .                                                           (7) 
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The Minkowski difference of two sets A and B is defined as 

{ } CBABxAxxBA ∩=∉∈= and\  .                                             (8) 

Post-processing bark regions 

In order to show how domain-dependent rules can be developed and applied, we begin with an 
example concerning bark.  It is easy for the ANN to incorrectly label pixels as bark, as its density is very 
similar to that of clear wood.  Because bark typically lies on the outside of a log (we ignore the case of 
included bark for the present), it is possible to state this simple rule:  Retain only those bark regions in the 
image that lie at the outer boundary of the log.  The high-level processing strategy is first to determine 
which points lie on the outside edge of the log, and then to retain only those bark regions that overlap one 
or more boundary points.   

Let us first consider morphological post-processing operations that can be used to obtain the 
boundary.  This is illustrated in Figure 2.  Figure 2a shows an image of a red oak log that has lost most of 
its bark, except for the upper right and lower left portions of the image.  A binary log image, in which 
(black) foreground points represent the log, is obtained as the union of all labeled images produced by the 
ANN (Figure 2b).   This binary image is dilated using a 3 × 3 structuring element, and points associated 
with Figure 2b are removed from the dilated version.  The result is a representation of the log’s boundary, 
as shown in Figure 2c, and will be used in subsequent processing.  Algebraically, the procedure can be 
written as 

                                                               C = (A ⊕ B) \ A = (A⊕ B)∩ Ac                                              (9) 

where A is the binary log image, B is the structuring element, and C is the result.  Notice that the 
structuring element can be expressed formally as B = {(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), (0, 1),(1, -1), 
(1, 0), (1, 1)}.  Dilation by this structuring element causes A to be enlarged by one pixel in every 
direction. 

 

   

(a) (b) (c) 

Figure 2.  Post-processing example for bark.  (a) CT image slice of red oak log.  (b) Foreground points 
associated with the log.  (c ) The detected outside boundary of the log. 

The next step is to eliminate regions detected by the ANN that do not touch the boundary.  Initial bark 
regions for this image, as labeled by the ANN, are shown in Figure 3a.  In this example, several small 
regions have been incorrectly labeled as bark, and a fairly large region near the top has also been 
incorrectly labeled.  We first apply morphological opening to the initial bark region, using the same 
structuring element that is used in the extraction of the log’s boundary.  This removes small “necks” that 
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connect larger regions, smoothes region boundaries, and additionally removes some of the smaller 
spurious regions from further consideration.  The result is shown in Figure 3b.   

To this image we apply conditional dilation.  This is an iterative procedure that retains only those 
regions that are designated initially using “marker” points.  In our case all foreground points in the 
boundary image C (Figure 2c) serve as marker points.  C is repeatedly dilated using the 3 × 3 structuring 
element B that was described earlier, but at every iteration the intermediate result is intersected with the 
bark image given in Figure 3b.  We designate this input bark image as Ibark , and it serves formally as a 
“mask” image for the conditional dilation.  The conditional dilation can be expressed as 

Ibark _ new = (C ⊕B)( i) ∩ Ibark                                                     (10) 

where the superscript (i)  represents the repetition index.  The dilations and intersections continue until no 
change occurs; i.e., (C ⊕ B)(i ) ∩ Ibark = (C ⊕ B)(i +1) ∩ Ibark .  The result of this is shown in Figure 3c. 

 

 

   

(a) (b) (c) 

Figure 3.  Continued processing for bark.  (a) Bark image.  The dark points represent bark, as tentatively 
identified by the ANN.  (b) The result of morphological opening.  (c) The result after removing regions 
not on the boundary of the log. 

The post-processing steps for bark are summarized in the diagram of Figure 4. 
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Figure 4.  Post-processing of bark regions.   Relatively simple morphological processing leads to 
improved results. 
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Post-processing knot regions 

Knots are perhaps the most common type of defect in wood.  Knots typically have a higher density 
than surrounding clear wood, and tend to have an rounded shape in images.  (This is unlike splits, 
discussed in the next section, which tend to be long and narrow.)  A problem with knots, and more 
generally with all defect detection in hardwoods, is that annual rings often cause misclassifications partly 
because of their wide variations in density.  In addition, the ANN often classifies isolated high-density 
points as knots, and these need to be removed.  This is shown in the example knot image of Figure 5. 

 

   

(a) (b) (c) 

Figure 5.  The result of morphological post-processing for knots.  (a)  Tentative knot image, as produced 
by the ANN classifier.  The misclassifications shown here are perhaps worse than our typical 
classification cases, but serve to illustrate the efficacy of the post-processing approach.  (b) Removal of 
isolated knot pixels.  (c) Output produced by majority filtering. 

One method of removing isolated pixels is to use a morphological template-matching process known 
as the hit-or-miss transform.  This operation requires specifying 2 different nonoverlapping structuring 
elements.  One of them, B1, specifies relative positions of foreground points to be matched, and the other, 
B2, specifies relative positions of background points to be matched.  The two structuring elements must 
satisfy  B1 ∩B2 = ∅ , and the hit-or-miss transform is defined as 

A ⊗ B1, B2{ }= (AΘB1) ∩ (AcΘB2 ) .                                                  (11) 

Example structuring elements are shown in Figure 6, and the result of applying this transform to the 
image of Figure 5a is shown in Figure 5b. 

 

 

 

 
 B1   B2  

Figure 6.  Structuring elements for isolated pixel removal.  B1 is just a single point, and is the “hit” 
structuring element.  B2 consists of 8 points surrounding the center pixel, and is the “miss” structuring 
element. 

The hit-or-miss transform finds isolated points, and we wish to remove them from the image.  This 
can be done by applying the following morphological operation, 

{ }( )21_ ,\ BBIII knotknotnewknot ⊗=   ,                                             (12) 
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where Iknot_ new  is the filtered image, Iknot  is the unfiltered image, and B1, B2  are structuring elements 

described above. 

The majority algorithm is now used to connect isolated regions in a knot.  The majority algorithm 
considers the 9 pixels within a 3 × 3 neighborhood.  Because pixels can have only foreground or 
background values, more than half of the 9 pixels must have one of these two values.  That value replaces 
the value at the center pixel.  This was applied to the image in Figure 5b, resulting in Figure 5c. 

Post-processing split regions 

A split is a longitudinal and radial separation of the wood, due to the tearing apart of wood cells.  
Wood is distinctly anisotropic, meaning that its principal characteristics are different depending on 
direction.  Post-processing operations can be selected to take advantage of the narrow, elongated shapes 
that are expected of split regions.   

The flowchart procedure for this is given in Figure 7.  First, a majority filter is applied (as described 
in the previous section) to partially eliminate problems due to annual rings.  Next, morphology operations 
are employed to extract a skeleton of each region.  A skeleton is a thinned representation of a region that 
retains information associated with its original size, orientation, and connectivity.  Lantuéjoul (1980) 
showed that the skeleton of a binary image A could be expressed in terms of morphological erosions and 
openings. With S(A) denoting the skeleton of A, it can be shown that 

  
S(A) = Sk (A)

k=0

K

U                                                                  (13) 

with 

( ) ( ) ( )[ ]{ }U o
K

k
k BkBAkBAAS

0

\
=

ΘΘ=                                             (14) 

where B is a structuring element, (AΘkB)  indicates k successive erosions of A, i.e., 

  AΘkB( ) = ((L(AΘB)ΘB)ΘL)ΘB   ,                                               (15) 

and K is the number of steps before A erodes to an empty set:   

 ( ){ }∅≠Θ= kBAkK max  .                                                     (16) 

The skeletonization procedure will typically produce a thinned image in which some small, spurious 
regions remain.  We now remove these, eliminating all regions having an area that is smaller than an 
empirically chosen threshold.    

Because splits are very narrow, they are often difficult to detect in CT images.  Because of this, splits 
are often detected by the ANN as separate regions that need to be linked.  For the case that 2 or more split 
regions are present, we now apply a linking step that searches for skeleton endpoints that lie in close 
proximity.  If the distance is sufficiently small between any two endpoints from different skeletons, then 
these two endpoints are joined by a straight line.    

It is relatively simple to find the endpoints of skeletons, using morphological hit-or-miss operations 
with the different templates depicted in Figure 8.  Each template represents a particular type of endpoint 
configuration using different sets, B1 and B2, as introduced in equation (11).   
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Figure 7.  Post-processing procedure for split regions.  Because splits are often very narrow, they can be 
difficult to detect in CT images. 

 

After linking nearby skeletons, we refine the resulting regions by applying a morphological pruning 
algorithm to remove small, spurious branches.  Conceptually, this is accomplished by repeatedly detecting 
skeleton endpoints and removing those endpoints.  However, if this is performed directly, the main 
branches of the skeletons will be shortened as the small spurs are removed.  To avoid this problem, we 
have adopted a skeleton filtering procedure introduced by Soille (1998).  With this technique, spurious 
branches are removed without shortening the main branches that represent splits.  
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Figure 8.  Structuring elements for endpoint detection.  Each grid of 9 points represents a pair of 
structuring elements.  In each case, the dark cells represent the set of foreground pixels (B1 in equation 
(11)), and the white cells represent the set of background pixels (B2).   

An example of split post-processing is illustrated in Figures 9 and 10.  The CT image shown in Figure 
9 contains a relatively long split.  As Figure 10a illustrates, annual rings can confuse the ANN classifier in 
some cases.  The majority-filtering algorithm eliminates most annual rings (Figure 10b), and 
skeletonization thins all of the resulting regions to 1-pixel widths (Figure 10c).   Small regions are then 
removed (Figure 10d), and the remaining connected components are linked (Figure 10e).  Finally, most 
spurious branches are removed from the resulting split region, while keeping the main branch unchanged.  
In this case, the result is not perfect;  a connected side split (barely visible at the 2 o’clock position in 
Figure 9 and Figure 10a) is eventually eliminated by these post-processing steps.  It is a sub-pixel 
resolution split that is difficult even for the human eye to detect. 
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Figure 9.  An original CT image of red oak that contains a prominent split. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 10.  Post-processing of split regions.  (a) Split pixels, as tentatively assigned by the ANN. (b) The 
result of majority filtering algorithm.  (c) Result of skeletonization.  (d) Result of spurious object removal.  
(e) Result of branch linking.  (f) Result of final skeleton filtering. 

Post-processing other region types 

Clear wood and decay have similar geometric features, but they have very different density and 
texture characteristics, which the ANN can accurately distinguish in most cases.  However, after 
removing spurious pixels and regions from each defect layer, the clear wood layer needs to be expanded 
to fill those vacated pixels.  We use a hole-filling algorithm implemented using morphological operators.  
This algorithm inserts new foreground pixels into the clear wood layer, at points corresponding to the 
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surroundings of foreground regions in each defect layer.  Because decay defects are so similar to clear 
wood, we apply a similar hole-filling algorithm to the decay defect layer. 

 

Merging the results 

After post-processing the individual layers separately (knots, splits, bark, and decay, and clear wood), 
we need to combine all separated layers into a final image.  However, some defect regions will have 
grown, causing some regions from different layers to overlap.  To resolve those overlaps, we have 
developed precedence rules (Table 1) to determine which defect label is retained when a pixel is assigned 
different labels by separate post-processing steps.  For example, the region-filling algorithm applied to 
clear wood will create overlaps with knot regions.  Because it is important to distinguish knots, we give 
those regions preference over clear wood regions.  Whenever clear wood overlaps with any defect type, 
clear wood surrenders its pixel label at that specific point.  Because splits and decay can appear inside of 
knot, they are given precedence over knots whenever an overlap occurs.  Included bark has not been 
addressed by the current system, so bark assumes the highest precedence. 

Table 1.  Precedence rules to resolve pairs of overlapping labels.  The unshaded labels in the table 
represent the “winners” for cases that two labels (one shaded label from the left, and one shaded label 
from the bottom) have been assigned to a single pixel.   

Knot Knot    
Split Split Split   
Decay Decay Knot Split  
Bark Bark Bark Bark Bark 
 Clear Wood Knot Split Decay 

 

An example of merging the result is shown in Figure 11.  Using the original image given in Figure 2a, 
the background is detected and an ANN assigns tentative labels, as shown in Figure 11b.  Morphological 
post-processing is conducted separately for each label type.  The individual results are combined in Figure 
11c.  Subjectively, post-processing results in a considerable improvement for this example.    

 

 

 

  

(a) (b) (c) 

Figure 11. Example to illustrate the improvements that can result from post-processing. (a) Original CT 
image, repeated from Figure 2a.  (b) Initial labels assigned by ANN.  (c) Combined result of post-
processing. The split near the center has been enlarged slightly (by morphological dilation) to make it 
easier to see. 
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Conclusions 

Despite our success with ANNs for defect classification, spurious pixel misclassifications often 
remain from initial labeling.  A wealth of powerful and effective morphological operators exist that can 
be used in combination based on domain-specific rules.  These rules are tied to intuitive knowledge 
regarding defect manifestations within hardwood logs.  Our current results with knots, bark, and split 
regions demonstrate impressive visual successes.  However, we do not yet have quantitative estimates of 
misclassification improvements from post-processing. 

The work reported here is one aspect of classification post-processing.  We expect that there will be 
instances where small regions will remain following morphological post-processing.  Other rule bases 
will need to be developed to handle those cases.  Furthermore, the precedence rules in Table 1 can be 
extended to infer new defect types based on regional features.  For example, if a knot pixel overlaps with 
a decay pixel, then the region containing those pixels could reasonably be labeled as an unsound knot.  
Otherwise, this defect type is not explicitly considered by either the ANN or the current binary 
morphology scheme.  However, our approach separates post-processing into manageable and less-
complex images that can be extensively manipulated and then combined into a composite representation 
of a log’s internal features.  This appears to be an effective and powerful approach to post-processing for 
defect detection. 

Acknowledgement  

This work was supported in part by USDA National Research Initiative competitive grant #98-35504-
6581. 

References 

Benson-Cooper, D. M., Knowles, R. L., Thomson, F. J., and Cown, D.J., 1982. Computed tomographic 
scanning for the detection of defects within logs, Bull.  No. 8, Forest Research Institute, New Zealand 
Service. 

Burgess, A. E., 1985. Potential application of medical imaging techniques to wood products. In Szymani, 
R. (Ed.), 1st International Conference on Scanning Technology in Sawmilling, October 10-12, San 
Francisco CA. 

Birkeland, R., and Holoyen, S., 1987. Industrial methods for internal scanning of log defects: a progress 
report on an ongoing project in Norway. In Szymani, R. (Ed.), 2nd International Conference on Scanning 
Technology in Sawmilling, October 1-2, Oakland/Berkeley Hills CA. 

Chang, S. J., Olson, J. R., and Wang, P. C., 1989. NMR Imaging of internal features in wood. Forest 
Products Journal, Vol. 39, No. 1: pp. 43-49. 

Cown, D. J., and Clement, B. C., 1983. A wood densitometer using direct scanning with x-rays. Wood 
Science Technology, Vol. 17. No. 2: pp. 91-99. 

Davis, J.R, and Wells, P., 1992. Computed tomography measurements on wood. Industrial Metrology, 
Vol. 2: pp. 195-218. 

Grönlund, A., 1992. Benefits from knowing the interior of the log. In Lindgren, O. (Ed.), 1st International 
Seminar on Scanning Technology and Image Processing on Wood, August 30-September 1, Skellefteå 
Sweden. 



Sarigul et al. 49

Grundberg, S., and Grönlund, A., 1992, Log scanning – extraction of knot geometry. In Lindgren, O. 
(Ed.), 1st International Seminar on Scanning Technology and Image Processing on Wood, August 30-
September 1, Skellefteå Sweden. 

Haralick, R. M., Sternberg, S. R., and Zhuang, X., 1987. Image analysis using mathematical morphology, 
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. PAMI-9. No. 4: pp. 532-550. 

Harless, T. E. G., Wagner, F. G., Steele, P. H., Taylor, F. W., Yadama, V., and McMillin, C. W., 1991. 
Methodology for locating defects within hardwood logs and determining their impact on lumber-value 
yield, Forest Products Journal, Vol. 41, No. 4: pp. 25-30.  

Hodges, D. G., Anderson, W. C., and McMillin, C. W., 1990. The economic potential of CT scanners for 
hardwood sawmills. Forest Products Journal, Vol. 40, No. 3: pp. 65-69. 

Hopkins, F., Morgan, I. L., Ellinger, H., and Klinksiek, R., 1982. Tomographic image analysis. Material 
Evaluation, Vol. 40., No. 20: pp. 1226-1228. 

Lantuéjoul, C., 1980. Skeletonization in quantitative metallography. In Haralick, R. M., and Simon, S.C 
(Eds.), Issues of Digital Image Processing, Sijthoff and Noordhoff, Groningen, The Netherlands. 

Li, P., Abbott, A. L., and Schmoldt, D. L., 1996. Automated analysis of CT images for the inspection of 
hardwood logs. In Proceedings of the 1996 IEEE International Conference on Neural Networks, 
Washington, D.C.  

Matheron, G., 1975.  Random sets and integral geometry.  New York:  John Wiley. 

Occeña, L. G., 1991. Computer integrated manufacturing issues related to the hardwood log sawmill. 
Journal of Forest Engineering, Vol. 3, No. 1: pp. 39-45. 

Serra, J., 1982.  Image analysis and mathematical morphology.  London:  Academic Press. 

Schmoldt, D.L., 1996.  CT imaging, data reduction, and visualization of hardwood logs.  In Meyer, D. 
(Ed.), Proceedings of the 1996 Hardwood Research Symposium, Memphis, TN, pp. 69-80. 

Schmoldt, D.L., He, J., and Abbott, A.L., 2000.  Automated labeling of log features in CT imagery of 
multiple hardwood species.  Wood and Fiber Science  (in press). 

Schmoldt, D. L., Li, P., and Abbott, A. L., 1997. Machine vision using artificial neural networks and 3D 
pixel neighborhoods, Computers and Electronics in Agriculture, Vol. 16, No. 3: pp. 255-271. 

Soille, P., 1998. Morphological Image Analysis. Berlin: Springer-Verlag. 

Taylor, F. W., Wagner, J. F. G., McMillin, C. W., Morgan, I. L., and Hopkins, F. F., 1984. Locating knots 
by industrial tomography – a feasibility study. Forest Products Journal, Vol. 34, No. 5: pp. 42-46. 

Wagner, F. G., Taylor, F. W., Ladd, D. S., McMillin, C. W., and Roder, F. L., 1989. Ultrafast CT 
scanning of a oak log for internal defects. Forest Products Journal, Vol. 39. 

Zhu, D. P., 1993. A feasibility study on using CT image analysis for hardwood log inspection. Ph.D. 
dissertation, Bradley Department of Electrical Engineering, Virginia Tech. 



Proceedings:
4th International Conference on
Image Processing and Scanning

of Wood

IPSW 2000

21-23 August, 2000
Mountain Lake Resort

Mountain Lake, Virginia USA

D. Earl Kline and A. Lynn Abbott
Technical Editors

Sponsored by the USDA Forest Service, Southern Research Station
in cooperation with Virginia Polytechnic Institute and State University (Virginia Tech)

and the International Union of Forestry Research Organizations (IUFRO)


	Abstract
	Introduction
	Overview of mathematical morphology
	Figure 1.

	Post-processing bark regions
	Figure 2.
	Figure 3.
	Figure 4.

	Post-processing knot regions
	Figure 5.
	Figure 6.

	Post-processing split regions
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.

	Post-processing other region types
	Merging the results
	Table 1.
	Figure 11.

	Conclusions
	Acknowledgement
	References

