Modeling the Hydrologic Processes of a Depressional Forested Wetland in South Carolina, U.S.A.

  • Author(s): Sun, Ge; Callahan, Timothy; Pyzoha, Jennifer E.; Trettin, Carl C.; Amatya, Devendra M.
  • Date: 2004
  • Source: Pp.331-332, In Proc. of Abstracts and Papers (on CD-ROM) of the 6th International Conf. on Hydro-Science and Engineering, Brisbane, Australia, May 31-June 03, 2004, eds. M.S. Altinakar, S.S.Y. Wang, K.P. Holz and M. Kawahara.
  • Station ID: --

Abstract

Depressional forested wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays are common land features in the Atlantic Coastal Plain of the southeastern US. Those wetlands play important roles in providing wildlife habitats, water quality improvement, and carbon sequestration. Great stresses have been imposed on those important ecosystems due to rapid human population growth and climate change in the region. The objectives of this research were to (1) test a distributed forest hydrology model, FLATWOODS, for a Carolina bay wetland system using seven years of water table data and (2) apply the validated model to understand how wetland position (geomorphology) and geology affect lateral groundwater flow directions. The research site is a 6-ha depressional wetland known as a Carolina bay and is located in Eamberg County, South Carolina on the Lower Coastal Plain of the southeastern US (32.88 N, 81.12 W). Model calibration (1998) and validation (1997, 1999-2003) data span a wet and a long drought period allowing testing of the model for a wide range of weather conditions. While the major input to the wetland is atmospheric rainfall and output from the wetland is through evapotranspiration, modeling results suggest that the Carolina bay is a flow-through wetland, receiving discharged groundwater from one part of the upland area, but losing water as groundwater recharge to the other side, especially during wet periods in winter months. The simulation study also suggests that groundwater flow direction is controlled by the gradient of the underlying hydrologic restricting layer beneath the wetland-upland continuum, not by the topographic gradient of land surface. Groundwater flow appeared to change flow direction during the transition period during the wet-dry cycle. The changes depend on the geomorphoiogy and underlying geology of the wetland-upland continuum.

  • Citation: . . Modeling the Hydrologic Processes of a Depressional Forested Wetland in South Carolina, U.S.A. Pp.331-332, In Proc. of Abstracts and Papers (on CD-ROM) of the 6th International Conf. on Hydro-Science and Engineering, Brisbane, Australia, May 31-June 03, 2004, eds. M.S. Altinakar, S.S.Y. Wang, K.P. Holz and M. Kawahara.

Pristine Version Available

An uncaptured, or “pristine” version of this publication is available. It has not been subjected to OCR and therefore does not have any errors in the text. However, it is a larger file size and some people may experience long download times.

Download “Pristine” Publication
(PDF; 1.2 MB)


Requesting Publications

You can order print copies of our publications through our publication ordering system. Make a note of the publication you wish to request, and visit our Publication Order Site.

Publication Notes

  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unuseable.
  • To view this article, download the latest version of Adobe Acrobat Reader.