Effects of forest harvesting and biomass removal on soil carbon and nitrogen: Two complementary meta-analyses

  • Authors: James, Jason; Page-Dumroese, Deborah; Busse, Matt; Palik, Brian; Zhang, Jianwei; Eaton, Bob; Slesak, Robert; Tirocke, Joanne; Kwon, Hoyoung
  • Publication Year: 2021
  • Publication Series: Scientific Journal (JRNL)
  • Source: Forest Ecology and Management
  • DOI: 10.1016/j.foreco.2021.118935

Abstract

Forest residues and logging slash from pre-commercial forest thinning and regeneration harvests are a potential feedstock for bioenergy production but there has been a concern about the impact of residue removal on forest soil C and N. This study aimed to address such by conducting two meta-analyses using the data available from published literature and an independent dataset compiled from the North American Long-Term Soil Productivity (LTSP) study. For the meta-analysis using literature, we categorized forest harvesting and biomass removal into i) no harvest control, ii) bole-only (BO, partial or clearcut) regular harvests, iii) BO with partial removal of logging slash and/ or O horizon (BO+Removal), iv) whole tree harvests (WTH), and v) WTH with slash and O horizon removal (WTH+Removal). Accordingly, we compiled soil C and N data and key statistics (e.g., standard deviation) from 142 scientific articles published since 1979. We compared the results from this meta-analysis with data from 22 installations of the LTSP study where three levels of organic matter removal - BO, WTH, and WTH plus forest floor (+FF, O horizon) removal - as well as an additional vegetation control (+VC) were measured for two decades in either completely randomized or randomized block design. In the literature meta-analysis, BO+Removal (-19.2%), WTH (-15.4%) and WTH+Removal (-24.9%) contained significantly less soil C than no-harvest controls across combined soil depths, while BO had no difference. Within individual mineral soil horizons, only BO+Removal and WTH+Removal treatments contained significantly less carbon than controls. There was a high degree of heterogeneity in treatment response between studies in the literature. The analyses from the LTSP dataset showed no significant difference in combined soil depths for WTH or WTH+VC relative to BO harvest, but there was significantly less soil C in BO+VC (-3.6%), WTH+FF (-8.5%) and WTH+FF+VC (-15.3%). These treatment effects declined over time since harvest, particularly the most intensive treatments. Soil N results largely mirrored soil C in both meta-analyses with smaller estimated effects for most treatments at equivalent depths (except for WTH+Removal and WTH+FF+VC, which remain about the same). There were no significant differences in soil N for combined soil depths between WTH and no-harvest control (in the literature analysis) or BO harvest (for both analyses). Since the most severe losses of soil C and N involved FF removal, WTH that accounts for modest removals (<80%) of harvesting residues may provide a sustainable source of biomass for bioenergy production without additional soil impacts compared to BO harvesting practices.

  • Citation: James, Jason; Page-Dumroese, Deborah; Busse, Matt; Palik, Brian; Zhang, Jianwei; Eaton, Bob; Slesak, Robert; Tirocke, Joanne; Kwon, Hoyoung. 2021. Effects of forest harvesting and biomass removal on soil carbon and nitrogen: Two complementary meta-analyses. Forest Ecology and Management. 485(28): 118935. 19 p. https://doi.org/10.1016/j.foreco.2021.118935.
  • Keywords: Long term soil productivity, Soil carbon, Soil nitrogen, Meta-analysis, Bioenergy production, Whole tree harvest
  • Posted Date: February 23, 2021
  • Modified Date: March 26, 2021
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • To view this article, download the latest version of Adobe Acrobat Reader.