Dissecting resistance to Phytophthora cinnamomi in interspecific hybrid chestnut crosses using sequence-based genotyping and QTL mapping

  • Authors: Zhebentyayeva, Tetyana N.; Sisco, Paul H.; Georgi, Laura L.; Jeffers, Steven N.; Perkins, M. Taylor; James, Joseph B.; Hebard, Frederick V; Saski, Christopher; Nelson, C. Dana; Abbott, Albert G.
  • Publication Year: 2019
  • Publication Series: Scientific Journal (JRNL)
  • Source: Phytopathology
  • DOI: 10.1094/PHYTO-11-18-0425-R

Abstract

The soilborne oomycete Phytophthora cinnamomi—which causes root rot, trunk cankers, and stem lesions on an estimated 5,000 plant species worldwide—is a lethal pathogen of American chestnut (Castanea dentata) as well as many other woody plant species. P. cinnamomi is particularly damaging to chestnut and chinquapin trees (Castanea spp.) in the southern portion of its native range in the United States due to relatively mild climatic conditions that are conductive to disease development. Introduction of resistant genotypes is the most practical solution for disease management in forests because treatment with fungicides and eradication of the pathogen are neither practical nor economically feasible in natural ecosystems. Using backcross families derived from crosses of American chestnuts with two resistant Chinese chestnut cultivars Mahogany and Nanking, we constructed linkage maps and identified quantitative trait loci (QTLs) for resistance to P. cinnamomi that had been introgressed from these Chinese chestnut cultivars. In total, 957 plants representing five cohorts of three hybrid crosses were genotyped by sequencing and phenotyped by standardized inoculation and visual examination over a 6-year period from 2011 to 2016. Eight parental linkage maps comprising 7,715 markers were constructed, and 17 QTLs were identified on four linkage groups (LGs): LG_A, LG_C, LG_E, and LG_K. The most consistent QTLs were detected on LG_E in seedlings from crosses with both ‘Mahogany’ and ‘Nanking’ and LG_K in seedlings from ‘Mahogany’ crosses. Two consistent large and medium effect QTLs located ;10 cM apart were present in the middle and at the lower end of LG_E; other QTLs were considered to have small effects. These results imply that the genetic architecture of resistance to P. cinnamomi in Chinese chestnut × American chestnut hybrid progeny may resemble the P. sojae–soybean pathosystem, with a few dominant QTLs along with quantitatively inherited partial resistance conferred by multiple small-effect QTLs.

  • Citation: Zhebentyayeva, Tetyana N.; Sisco, Paul H.; Georgi, Laura L.; Jeffers, Steven N.; Perkins, M. Taylor; James, Joseph B.; Hebard, Frederick V.; Saski, Christopher; Nelson, C. Dana; Abbott, Albert G. 2019. Dissecting resistance to Phytophthora cinnamomi in interspecific hybrid chestnut crosses using sequence-based genotyping and QTL mapping . Phytopathology. : PHYTO-11-18-042-. https://doi.org/10.1094/PHYTO-11-18-0425-R.
  • Keywords: analytical plant pathology, theoretical plant pathology
  • Posted Date: August 21, 2019
  • Modified Date: October 10, 2019
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.