Evapotranspiration and water yield of a pine-broadleaf forest are not altered by long-term atmospheric [CO 2 ] enrichment under native or enhanced soil fertility

  • Authors: Ward, Eric J.; Oren, Ram; Kim, Hyun Seok; Kim, Dohyoung; Tor-ngern, Pantana; Ewers, Brent E.; McCarthy, Heather R.; Oishi, A. Christopher; Pataki, Diane E.; Palmroth, Sari; Phillips, Nathan G.; Schäfer, Karina V.R.
  • Publication Year: 2018
  • Publication Series: Scientific Journal (JRNL)
  • Source: Global Change Biology
  • DOI: 10.1111/gcb.14363

Abstract

Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half-hourly basis. These measurements were synthesized using a one-dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak (<3% of mean annual precipitation). Likewise, while E responded to ECO2 in the first 7 years of the study, this effect was of negligible magnitude (<1% mean annual precipitation). Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model–data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.

  • Citation: Ward, Eric J.; Oren, Ram; Kim, Hyun Seok; Kim, Dohyoung; Tor-ngern, Pantana; Ewers, Brent E.; McCarthy, Heather R.; Oishi, A. Christopher; Pataki, Diane E.; Palmroth, Sari; Phillips, Nathan G.; Schäfer, Karina V.R. 2018. Evapotranspiration and water yield of a pine-broadleaf forest are not altered by long-term atmospheric [CO2] enrichment under native or enhanced soil fertility . Global Change Biology. https://doi.org/10.1111/gcb.14363.
  • Posted Date: August 2, 2018
  • Modified Date: November 8, 2018
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.