Influence of reproduction cutting methods on structure, growth and regeneration of longleaf pine forests in flatwoods and uplands

Abstract

Though longleaf pine (Pinus palustris Mill.) forests have been primarily managed with even-aged methods, interest is increasing in uneven-aged systems, as a means of achieving a wider range of stewardship goals. Selection silviculture has been practiced on a limited scale in longleaf pine, but difficulty with using traditional approaches and absence of an evaluation across a range of site types has left managers in doubt concerning its suitability. This study was conducted to quantify the effects on stand dynamics of applying single-tree selection, group selection, irregular shelterwood and uniform shelterwood in longleaf pine forests on flatwoods and uplands of the southeastern United States. Selection treatments reduced stand basal area to ~11.5 m2 ha-1 and shelterwood treatments left a basal area of ~5.8 m2 ha-1. In spite of initial decreases in tree density and standing volume, growth rates were normal in all stands (1–5% per year), as were subsequent increases in basal area and tree density. Despite the continuing abundance of saw-palmetto (Serenoa repens W. Bartram) cover and absence of prescribed fire during the eight post-treatment years, significant increases in pine regeneration were observed in all treated stands in the flatwoods. Because of a multi-year drought in the uplands, pine seedling numbers dramatically declined, no matter which reproduction approach was employed. Although seedling numbers eventually began to recover, they were again precipitously depressed by a wildfire in 2013. Even with such losses, sufficient pine seedlings remained in each treatment to foster successful stand regeneration. Single-tree selection produced less overall change in the forest ecosystem than group selection, which caused less alteration than shelterwood treatment. Single-tree selection appears to be an effective way for achieving stand regeneration, while maintaining a continuous canopy cover that aids in the control of woody competitors and supports an array of resource values. Selection silviculture seems to be a lower risk approach for guiding forests along a trajectory of gradual improvement, with adjustments provided by frequent surface fires and periodic tree harvest. Long-term observation will be required to verify that selection can sustain forest ecosystems on sites characterized by differing environments.

  • Citation: Brockway, Dale G.; Outcalt, Kenneth W. 2017. Influence of reproduction cutting methods on structure, growth and regeneration of longleaf pine forests in flatwoods and uplands. Forest Ecology and Management. 389: 249-259.
  • Keywords: Pinus palustris, Continuous cover forestry, Pro-B method, Selection systems, Uneven-aged silviculture, Shelterwood methods, Even-aged silviculture
  • Posted Date: January 13, 2017
  • Modified Date: September 5, 2017
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.