Effects of visual grading on northern red oak (Quercus rubra L.) seedlings planted in two shelterwood stands on the Cumberland Plateau of Tennessee, USA

Abstract

Artificial regeneration of oak has been generally unsuccessful in maintaining the oak component in productive upland forests of eastern North America. We tested visual grading effects on quality-grown northern red oak (Quercus rubra) seedlings planted in two submesic stands on the Cumberland Plateau escarpment of Tennessee, USA. Seedlings were grown for one year using advanced fertilization and irrigation protocols to increase overall size of seedlings, but large variability in size was still evident. Seedlings were divided into two grades prior to planting. The “standard” grade represented seedlings that had undergone a light culling, and the “premium” grade represented the highest quality seedlings. Seven years after planting in a midstory-removal stand, 50 percent of trees survived, growth was negligible, and seedling grade had no effect on survival and yearly growth. In a shelterwood harvest stand, premium grade seedlings had taller height and larger basal diameter (BD) (241 cm and 29.5 mm, respectively) compared to standard seedlings (201 cm and 25.9 mm, respectively), and a two-year height growth advantage was achieved by planting premium grade compared to standard grade seedlings. Competitive ability and planting shock were similar between grades, and we postulate that an exceptional drought and large size variability in both grades equalized response. While our findings should be confirmed through additional testing, they suggest currently accepted seedling quality standards for northern red oak should be refined to improve regeneration efforts on productive sites in the eastern United States.

  • Citation: Clark, Stacy; Schlarbaum, Scott; Schweitzer, Callie 2015. Effects of visual grading on northern red oak (Quercus rubra L.) seedlings planted in two shelterwood stands on the Cumberland Plateau of Tennessee, USA. Forests. 6(10): 3779-3798. doi:10.3390/f6103779
  • Keywords: artificial regeneration; competitive ability; dominance; midstory removal; planting shock; seedling quality; shelterwood harvest; stem dieback
  • Posted Date: October 29, 2015
  • Modified Date: November 18, 2015
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.