The role of experimental forests and ranges in the development of ecosystem science and biogeochemical cycling research

  • Authors: Vose, James M.; Swank, Wayne T.; Adams, Mary Beth; Amatya, Devendra; Campbell, John; Johnson, Sherri; Swanson, Frederick J.; Kolka, Randy; Lugo, Ariel E.; Musselman, Robert; Rhoades, Charles.
  • Publication Year: 2014
  • Publication Series: Experimental Forests and Ranges
  • Source: In: Hayes, D.C.; Stout, S.L.; Crawford, R.H.; Hoover, A.P., eds. USDA Forest Service Experimental Forests and Ranges Research for the Long Term: 387-404.

Abstract

Forest Service watershed-based Experimental Forests and Ranges (EFRs) have significantly advanced scientific knowledge on ecosystem structure and function through long-term monitoring and experimental research on hydrologic and biogeochemical cycling processes. Research conducted in the 1940s and 1950s began as “classic” paired watershed studies. The emergence of the concept of ecosystem science in the 1950s and 1960s, the passage of the Clean Air Act and Clean Water Act in the 1970s, the nonpoint source pollution provision enacted in the Federal Water Pollution Control Act, and various other forces led to an increased interest in biogeochemical cycling processes. The ecosystem concept recognized that water, nutrient, and carbon cycles were tightly linked, and interdisciplinary approaches that examined the roles of soil, vegetation, and associated biota, as well as the atmospheric environment, were needed to understand these linkages. In addition to providing a basic understanding, several watershed-based EFRs have been at the core of the development and application of watershed ecosystem analysis to ecosystem management, and they continue to provide science to land managersand policy makers. The relevance and usefulness of watershed-based EFRs will only increase in the coming years. Stressors such as climate change and increased climate variability, invasive and noninvasive insects and diseases, and the pressures of population growth and land-use change increase the value of long-term records for detecting resultant changes in ecosystem structure and function.

  • Citation: Vose, James M.; Swank, Wayne T.; Adams, Mary Beth; Amatya, Devendra; Campbell, John; Johnson, Sherri; Swanson, Frederick J.; Kolka, Randy; Lugo, Ariel E.; Musselman, Robert; Rhoades, Charles. 2014. The role of experimental forests and ranges in the development of ecosystem science and biogeochemical cycling research. In: Hayes, D.C.; Stout, S.L.; Crawford, R.H.; Hoover, A.P., eds. USDA Forest Service Experimental Forests and Ranges Research for the Long Term: 387-404.
  • Keywords: Long-term data, Watersheds, Interdisciplinary, Nutrient cycling, Ecosystem management
  • Posted Date: October 7, 2014
  • Modified Date: November 9, 2015
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.