A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels

  • Authors: Fonseca Silva, Teresa Cristina; Habibi, Youssef; Colodette, Jorge Luiz; Elder, Thomas; Lucia, Lucian A.
  • Publication Year: 2012
  • Publication Series: Scientific Journal (JRNL)
  • Source: Cellulose 19(6): 1945-1956
  • DOI: 10.1007/s10570-012-9761-x

Abstract

Freeze-dried nanofibrillated cellulose based-aerogels were produced from cellulosic pulps extracted from Eucalyptus urograndis. Nanofibers were isolated under high pressure and modified with TEMPO-mediated oxidation and/or hydroxyapatite (HAp) to observe potential changes in mechanical properties. Two degrees of oxidation (DO), 0.1 and 0.2, were achieved as measured by conductimetric titration. Oxidized and non-oxidized samples were modified with HAp at a ratio of HAp:cellulose of 0.2:1. Morphology (FE-SEM), pore size, surface area, and mechanical properties were obtained to characterize the produced aerogels. The results clearly demonstrate a homogeneous morphology for aerogels fabricated with oxidized cellulose nanofibers. The nature of water present in the material was measured using time domain-nuclear magnetic resonance spectroscopy (TD-NMR) and demonstrated that it played a key role in the development of the porous and uniform microarchitecture. TEMPO-mediated oxidation and the addition of HAp resulted in aerogels with high mechanical strength as demonstrated from an increase from approximately 75–200 kPa in compressive strength when reduced to 50 %of their original height. However, the contribution of oxidation to the mechanical properties was more pronounced than the addition of HAp. In general, the density of the aerogels varied from 0.008 to 0.011 g/cm3 in which slightly lightweight aerogels were produced by increasing the degree of oxidation, whereas the incorporation of HAp as a modifying agent for potential bio-based tissue scaffolding matrices did not significantly contribute to higher densities.

  • Citation: Fonseca Silva, Teresa Cristina; Habibi, Youssef; Colodette, Jorge Luiz; Elder, Thomas; and Lucia, Lucian A. 2012. A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels. Cellulose 19(6): 1945-1956.
  • Keywords: NFC, Aerogels, TEMPO, Hydroxyapatite
  • Posted Date: August 22, 2013
  • Modified Date: May 22, 2014
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.