Climate Variability and Its Impact on Forest Hydrology on South Carolina Coastal Plain, USA

Abstract

Understanding the changes in hydrology of coastal forested wetlands induced by climate change is fundamental for developing strategies to sustain their functions and services. This study examined 60 years of climatic observations and 30 years of hydrological data, collected at the Santee Experimental Forest (SEF) in coastal South Carolina. We also applied a physically-based, distributed hydrological model (MIKE SHE) to better understand the hydrological responses to the observed climate variability. The results from both observation and simulation for the paired forested watershed systems indicated that the forest hydrology was highly susceptible to change due to climate change. The stream flow and water table depth was substantially altered with a change in precipitation. Both flow and water table level decreased with a rise in temperature. The results also showed that hurricanes substantially influenced the forest hydrological patterns for a short time period (several years) as a result of forest damage.

  • Citation: . . Climate Variability and Its Impact on Forest Hydrology on South Carolina Coastal Plain, USA. Atmosphere 2:330-357.

Requesting Publications

You can order print copies of our publications through our publication ordering system. Make a note of the publication you wish to request, and visit our Publication Order Site.

Publication Notes

  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unuseable.
  • To view this article, download the latest version of Adobe Acrobat Reader.