Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling


Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex relationships into conditional distributions that can be used to draw inference and make predictions. We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological model – GR4J – by coherently assimilating the uncertainties from the model, observations, and parameters at Coweeta Basin in western North Carolina. A state-space model was within the Bayesian hierarchical framework to estimate the daily soil moisture levels and their uncertainties. Results show that the posteriors of the parameters were updated from and relatively insensitive to priors, an indication that they were dominated by the data. The uncertainties of the simulated streamflow increased with streamflow increase. By assimilating soil moisture data, the model could estimate the maximum capacity of soil moisture accounting storage and predict storm events with higher precision compared to not assimilating soil moisture data. This study has shown that hierarchical Bayesian model is a useful tool in water resource planning and management by acknowledging stochasticity.

  • Citation: Wu, Wei; Clark, James S.; Vose, James M. 2010. Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling. Journal of Hydrology 394(3-4):436-446.
  • Keywords: Hierarchical Bayesian modeling, Hydrological modeling, Soil moisture, Streamflow
  • Posted Date: May 3, 2011
  • Modified Date: February 10, 2021
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.