Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics

Abstract

Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual fuel types (shrubs) and heterogeneous fuelbed plots. Spatially explicit point-intercept fuel sampling also measured fuelbed heights and volume, while leaf area and biomass measurements of whole and sectioned shrubs were determined from destructive sampling. Volumes obtained by LIDAR and traditional methods showed significant discrepancies. We found that traditional means overestimated volume for shrub fuel types because of variation in leaf area distribution within shrub canopies. LIDAR volume estimates were correlated with biomass and leaf area for individual shrubs when factored by species, size, and plant section. Fuelbed heights were found to be highly variable among the fuel plots, and ground LIDAR was more sensitive to capturing the height variation than traditional point intercept sampling. Ground LIDAR is a promising technology capable of measuring complex surface fuels and fuel characteristics, such as fuel volume.

  • Citation: Loudermilk, E.L.; Hiers, J.K.; O’Brien, J.J.; Mitchell, R.J.; Singhania, A.; Fernandez, J.C.; Cropper, W.P., Jr.; Slatton, K.C. 2009. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics. International Journal of Wildland Fire 18:676–685.

Requesting Print Publications

Publication requests are subject to availability. Fiscal responsibility limits the hardcopies of publications we produce and distribute. Electronic versions of publications may be downloaded, distributed and printed.

Please make any requests at pubrequest@fs.fed.us.

Publication Notes

  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unuseable.
  • To view this article, download the latest version of Adobe Acrobat Reader.