Effects of prescribed fire and season of burn on direct and indirect levels of tree mortality in Ponderosa and Jeffrey Pine Forests in California, USA.

  • Authors: Fettig, Christopher; McKelvey, Stephen; Cluck, Daniel; Sheri, Smith; Otrosina, William
  • Publication Year: 2010
  • Publication Series: Scientific Journal (JRNL)
  • Source: Forest Ecology and Management 260:207-218.

Abstract

Many forests that historically experienced frequent low-intensity wildfires have undergone extensive alterations during the past century. Prescribed fire is now commonly used to restore these fire-adapted forest ecosystems. In this study, we examined the influence of prescribed burn season on levels of tree mortality attributed to prescribed fire effects (direct mortality) and bark beetles (Coleoptera: Curculionidae, Scolytinae) (indirect mortality) in ponderosa pine, Pinus ponderosa Dougl. ex Laws., and Jeffrey pine, Pinus jeffreyi Grev. and Balf., forests in California, USA. A total of 816 trees (9.9% of all trees) died during this 3-yr study. Significantly higher levels of tree mortality (all sources) occurred following early and late season burns compared to the untreated control, but no significant difference was observed between burn treatments. The majority (461 trees) of tree deaths were attributed to direct mortality from prescribed burns and was strongly concentrated (391 trees) in the smallest diameter class (<20.2cmdiameter at breast height, dbh). For the largest trees (>50.7cm dbh), significantly higher levels of tree mortality occurred on early season burns than the untreated control, most of which resulted from indirect mortality attributed to bark beetle attacks, specifically western pine beetle, Dendroctonus brevicomis LeConte, and mountain pine beetle, D. ponderosae Hopkins. Red turpentine beetle, D. valens LeConte, was the most common bark beetle species found colonizing trees, but tree mortality was not attributed to this species. A total of 355 trees (4.3% of all trees) were killed by bark beetles. Dendroctonus brevicomis (67 trees, 18.9%) and D. ponderosae (56 trees, 15.8%), were found colonizing P. ponderosa; and Jeffrey pine beetle, D. jeffreyi Hopkins, was found colonizing P. jeffreyi (seven trees, 2.0%). We also found pine engraver, Ips pini (Say) (137 trees, 38.6%), and, to a much lesser extent, Orthotomicus (=Ips) latidens (LeConte) (85 trees, 23.9%) and emarginate ips, I. emarginatus (LeConte) (3 trees, 0.8%) colonizing P. ponderosa and P. jeffreyi. Few meaningful differences in levels of indirect tree mortality attributed to bark beetle attack were observed between early and late season burns. The incidence of root and root collar pathogens (Leptographium and Sporothrix spp.), including species known to be vectored by bark beetles, was low (18% of trees sampled). The implications of these and other results to management of P. ponderosa and P. jeffreyi forests are discussed in detail.

  • Citation: Fettig, C.J.; McKelvey, S.R.; Cluck, D.R.; Smith, S.L.; Otrosina, W.J. 2010. Effects of prescribed fire and season of burn on direct and indirect levels of tree mortality in Ponderosa and Jeffrey Pine Forests in California, USA. Forest Ecology and Management 260:207-218.
  • Keywords: Dendroctonus, Fire hazard, Forest restoration, Ips, Pinus jeffreyi, Pinus ponderosa
  • Posted Date: September 17, 2010
  • Modified Date: September 21, 2010
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.