Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange

Abstract

Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of normal and below-normal precipitation, and examined its effects on tree transpiration, ecosystem water use and carbon exchange. The occurrence of HR was explained by courses of reverse flow through roots. As the drought progressed, HR maintained soil moisture above 0.15 cm³ cm-3 and increased transpiration by 30–50%. HR accounted for 15–25% of measured total site water depletion seasonally, peaking at 1.05 mm d-1. The understory species depended on water redistributed by the deep-rooted overstory pine trees for their early summer water supply. Modeling carbon flux showed that in the absence of HR, gross ecosystem productivity and net ecosystem exchange could be reduced by 750 and 400 g C m-2 yr-1, respectively. Hydraulic redistribution mitigated the effects of soil drying on understory and stand evapotranspiration and had important implications for net primary productivity by maintaining this whole ecosystem as a carbon sink.

  • Citation: Domec, J.-C.; King, J.S.; Noormets, A.; Treasure, E.; Gavazzi, M.J.; Sun, G.; McNulty, S.G. 2010. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange. New Phytologist 187:171-183.
  • Posted Date: June 8, 2010
  • Modified Date: June 8, 2010
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.