Mechanical response of longleaf pine to variation in microfibril angle, chemistry associated wavelengths, density, and radial position

  • Authors: Via, B. K.; So, C. L.; Shupe, T. F.; Groom, L. H.; Wikaira, J.
  • Publication Year: 2009
  • Publication Series: Scientific Journal (JRNL)
  • Source: Composites: Part A. 40: 60-66.
  • DOI: 10.1016

Abstract

The composite structure of the S2 layer in the wood cell wall is defined by the angle of the cellulose microfibrils and concentration of polymers and this structure impacts strength and stiffness. The objective of this study was to use near infrared spectroscopy and X-ray diffraction to determine the effect of lignin and cellulose associated wavelengths, microfibril angle, density, and radial position within the tree on strength and stiffness. The aromatic portion of lignin provided a good predictive role on strength and stiffness at high microfibril angles. However, in mature wood where microfibril angle and lignin content was low, cellulose associated wavelengths became increasingly important. The increased importance of the aromatic portion of lignin (1665 nm) on the strength as microfibril angle increased was attributable to the plastic deformation of lignin that occurred beyond the yield point. Finally, a fourfold increase in stiffness was observed when the microfibril angle dropped from 40 to 5 degrees.

  • Citation: Via, B. K.; So, C. L.; Shupe, T. F.; Groom, L. H.; Wikaira, J. 2009. Mechanical response of longleaf pine to variation in microfibril angle, chemistry associated wavelengths, density, and radial position. Composites: Part A. 40:60-66.
  • Keywords: wood, plastic deformation, micro-mechanics, mechanical testing
  • Posted Date: August 19, 2009
  • Modified Date: October 19, 2009
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.