Pinus taeda clones and soil nutrient availability: effects of soil organic matter incorporation and fertilization on biomass partitioning and leaf physiology

  • Authors: Tyree, Michael; Seiler, John; Maier, Chris; Johnsen, Kurt
  • Publication Year: 2009
  • Publication Series: Scientific Journal (JRNL)
  • Source: Tree Physiology: 1-15

Abstract

The combined effects of intensive management and planting of improved seedlings have led to large increases in productivity on intensively managed pine forests in the southeastern United States. To best match clones to particular site conditions, an understanding of how specific clones respond to changes in nutrition in terms of biomass partitioning, leaf physiology and biochemistry will be necessary. This study measured the response of biomass partitioning, light-saturated net photosynthesis (ASat) and photosynthetic capacity to a range in soil fertility and fertilization between two contrasting Pinus taeda L. clone ideotypes: a ‘narrow crown’ clone (NC) that allocates more resources to stem growth and a ‘broad crown’ clone (BC) that allocates more resources to leaf area (LA). Under field conditions, we found consistent clone by environment (i.e., varying nutrient regimes) interactions in biomass as well as leaf physiology. Nutrient limitations induced by logging residue incorporation resulted in a 25% loss in stem growth in BC, while NC showed no response. We postulated that the decrease in BC was due to the differences in canopy architecture leading to a reduced canopy CO2 assimilation, as well as to increased belowground maintenance costs associated with fine-root production. In contrast, N and P additions resulted in a 21% greater increase in stem volume in NC relative to BC. Fertilization increased ASat temporarily in both clones, but ASat eventually decreased below control levels by the end of the study. Although we found a clone by fertilization interaction in leaf physiology, the greatest genotype by environment interaction was found in theLAthat appeared to have a greater influence than ASat on growth. This research demonstrates the potential importance of selecting appropriate clonal material and silvicultural prescription when implementing site-specific silviculture to maximize productivity in intensively managed southern pine forests.

  • Citation: Tree Physiology: 1-15
  • Keywords: Asat, G X E interaction, JMax, loblolly pine, logging residue, photosynthesis, vcmax
  • Posted Date: July 21, 2009
  • Modified Date: July 23, 2009
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.