Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont

  • Author(s): Crumbley, Tyler; Sun, Ge; McNulty, Steve
  • Date: 2008
  • Source: Emerging issues along urban-rural interfaces II proceedings: pgs 196-199
  • Station ID: --

Abstract

Forested watersheds in the Southeastern U.S. provide high quality water vital to ecosystem integrity and downstream aquatic resources. Excessive sedimentation from human activities in forest streams is of concern to responsible land managers. Prescribed fire is a common treatment applied to Southeastern piedmont forests and the risk of wildfire is becoming increasingly important under the threat of changing climate. Measuring and predicting the amount of runoff and erosion from fire induced forested watersheds is difficult and costly. Erosion simulation models assist in relieving the time and resources consumed predicting these effects. The process-based Water Erosion Prediction Project (GeoWEPP) is widely used in the Western U.S. to predict erosion from forest fires. The objective of this study was to evaluate the effectiveness of the Geo WEPP model in predicting sedimentation amounts from low, moderate and high intensity forest fires on pine stands of the Sumter National Forest in the piedmont region of South Carolina. Modeling results were compared to observed sediment production of 48 small-scale plots within the watersheds. Results from the simulations conclude that the Geo WEPP model satisfactorily predicted erosion amounts during unburned, low and moderate intensity forest fire conditions. We found that low intensity fires may not elevate sediment loading above tolerable rates, however, severe fires can cause soil erosion and sediment loading at levels of concern in water quality degradation. Land topography, fire intensity, storm intensity and soil type are key variables to predicting soil erosion and runoff. This study is the first to evaluate the effectiveness of the Geo WEPP model in predicting runoff and sedimentation in Southeastern piedmont watersheds.

  • Citation: . . Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont. Emerging issues along urban-rural interfaces II proceedings: pgs 196-199.

Pristine Version Available

An uncaptured, or “pristine” version of this publication is available. It has not been subjected to OCR and therefore does not have any errors in the text. However, it is a larger file size and some people may experience long download times.

Download “Pristine” Publication
(PDF; )


Requesting Publications

You can order print copies of our publications through our publication ordering system. Make a note of the publication you wish to request, and visit our Publication Order Site.

Publication Notes

  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unuseable.
  • To view this article, download the latest version of Adobe Acrobat Reader.