Adaptations to host infection and larval parasitism in Unionoida

  • Authors: Barnhart, Christopher M.; Haag, Wendell R.; Roston, William N.
  • Publication Year: 2008
  • Publication Series: Miscellaneous Publication
  • Source: The North American Benthological Society 2008, 27(2):370-394


Freshwater mussel larval parasitism of fish is unique among bivalves. The relationship is primarily phoretic rather than nutritive; only the smallest glochidia and the haustorial larva grow substantially while on the host. Growth of the smallest larvae suggests a lower functional size limit of -150 )um for the juvenile stage. Most Ambleminae, the most diverse North American clade, infect host gills by attracting feeding fish. Many species of Pleurobemini and some Lampsilini release conglutinates of eggs and larvae that resemble host food items. Many Lampsilini and a few Quadrulini use mantle modifications to attract host fish to the female. The mantle of some Quadrulini forms a posterior chamber that holds glochidia for immediate release in response to host fish. In many Lampsilini, mantle flap lures and a protrusible marsupium promote attack by the host fish and direct extraction of glochidia from the marsupium by the host. Host extraction of glochidia from the brooding female might have favored the evolution of long-term brooding in ampsilini because glochidia need not be released by the female to encounter the host. A remarkable derivative of the host extraction strategy evolved in Epioblasma, which catch fish between the valves and release glochidia directly to the trapped host before releasing it. Host specificity is a critical feature of the evolutionary diversification and conservation biology of Unionoida. As temporary parasites, mussels must primarily evade the innate immune responses of the host, rather than the adaptive (acquired) responses. Evolution of host specificity is associated with selective encounter of host taxa, either because of host attraction strategies or because of dominance of particular host species in the habitat. The intricate relationships between mussels and fish are easily disrupted and, thus, contribute to the imperilment of many mussel species, yet they also fascinate us and compel conservation efforts.

  • Citation: Barnhart, Christopher M.; Haag, Wendell R.; Roston, William N. 2008. Adaptations to host infection and larval parasitism in Unionoida. The North American Benthological Society 2008, 27(2):370-394
  • Keywords: Unionoida, parasitism, freshwater mussel, glochidia, innate immunity, host specificity
  • Posted Date: December 17, 2008
  • Modified Date: May 19, 2009
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.