Efficacy of mechanical fuel treatments for reducing wildfire hazard

  • Author(s): Huggett, Robert J. Jr.; Abt, Karen L.; Shepperd, Wayne
  • Date: 2008
  • Source: Forest Policy and Economics, Vol. 10: 408-414
  • Station ID: --

Abstract

Mechanical fuel treatments are increasingly being used for wildfire hazard reduction in the western U.S. However, the efficacy of these treatments for reducing wildfire hazard at a landscape scale is difficult to quantify, especially when including growth following treatment. A set of uneven- and even-aged treatments designed to reduce fire hazard were simulated on 0.8 million hectares of timberland in Colorado. Wildfire hazard ratings using torching and crowning indices were developed; stands were selected for treatment; treatment was simulated and hazard ratings were reassessed. The results show that the even-aged treatments initially place more area within our hazard thresholds than do the uneven-aged treatments and that the uneven-aged treatment that removes more small stems reduces risk more than the treatment removing more large stems. The treatment costs follow the same pattern, with the even-aged treatments costing least. However, potential revenues are, as expected, higher for the uneven-aged large treatment. The results also show that both higher costs and higher revenues accrue to the treatments applied to the higher risk stands. Treatments also have differing risk reductions depending on the initial risk category. Even without considering growth or revenues, the outcomes of a state-level treatment program are difficult to estimate. This implies that at a minimum, forest-level, if not state-level analyses including overall measures of risk reduction, costs, revenues and long-term effects need to be conducted in concert with setting priorities for treating timberlands.

  • Citation: . . Efficacy of mechanical fuel treatments for reducing wildfire hazard. Forest Policy and Economics, Vol. 10: 408-414.

Requesting Publications

You can order print copies of our publications through our publication ordering system. Make a note of the publication you wish to request, and visit our Publication Order Site.

Publication Notes

  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unuseable.
  • To view this article, download the latest version of Adobe Acrobat Reader.