Fine root production and carbohydrate concentrations of mature longleaf pine (Pinus palustris P. Mill.) as affected by season of prescribed fire and drought

  • Authors: Sword Sayer, Mary Anne; Haywood, James D.
  • Publication Year: 2005
  • Publication Series: Miscellaneous Publication
  • Source: Trees 20: 165-175


The historical range of longleaf pine (Pinus palustris P. Mill) has been greatly reduced, in part, by lack of fire. Recently, the application of fire has become an accepted practice for the restoration of longleaf pine to former parts of its natural range. This study was designed to evaluate the effects of season of prescribed fire on the root growth and nonstructural carbohydrate concentrations of longleaf pine, and identify the time of year when fire has the least negative effect on longleaf pine root processes.We found that root growth was generally less on July-burned plots than on either March- or May-burned plots and we attribute these responses to the effect of fire on interaction between root processes and the soil environment. Specifically, soil water and temperature conditions may have been less favorable for root growth on the July-burned plots compared to the March- and May-burned plots.With two years of information on the seasonal dynamics of foliage production, root growth, and root carbohydrates, we determined that at our study site, optimal prescribed fire would impact tree growth less in November through March compared to other times of the year. We also observed that severe drought during the 1998 growing season was associated with a 3-month delay in peak root growth, and prolonged drought in 1999 through 2000 coincided with a reduction in root starch storage. We conclude that season of prescribed fire potentially affects root processes, but that severe or prolonged drought may either interact with or override these effects.

  • Citation: Sword Sayer, Mary Anne; Haywood, James D. 2005. Fine root production and carbohydrate concentrations of mature longleaf pine (Pinus palustris P. Mill.) as affected by season of prescribed fire and drought. Trees 20: 165-175
  • Posted Date: April 3, 2006
  • Modified Date: November 12, 2020
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.