Atmospheric response and feedback to radiative forcing from biomass burning in tropical South America

  • Authors: Liu, Yongqiang
  • Publication Year: 2005
  • Publication Series: Miscellaneous Publication
  • Source: Agricultural and Forest Meteorology 133: 40-53.


Simulations are performed to understand the importance of smoke from biomass burning in tropical South America to regional radiation and climate. The National Center for Atmospheric Research (NCAR) regional climate model coupled with the NCAR column radiative model is used to estimate smoke direct radiative forcing and consequent atmospheric perturbations during a smoke season in this region. The smoke optical properties are specified based on the measurements during the smoke, clouds, and radiation-Brazil experiment. The simulations obtain a direct radiative forcing of -16.5 W m-2 over the smoke region. This magnitude, however, is substantially reduced due to atmospheric feedback. Clouds and precipitation are reduced due to smoke. The cloud reduction mainly results from smaller water vapor transport from the ground and the planetary boundary layer to the cloud layer because of the combined effects of reduced turbulent activity and the subsidence tendency. The simulated cloud reduction agrees with a recent finding from satellite measurements. Smoke also leads to the enhancement of a dominant planetary-scale high system. A two-layer structure of warmer air with ascending tendency on top of cooler air with descending tendency is formed due to smoke with strong absorption.

  • Citation: Liu, Yongqiang 2005. Atmospheric response and feedback to radiative forcing from biomass burning in tropical South America. Agricultural and Forest Meteorology 133: 40-53.
  • Keywords: Biomass burning, Radiative forcing, Regional climate change, Climate modeling
  • Posted Date: March 22, 2006
  • Modified Date: August 22, 2006
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.