Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird

  • Authors: Pearson, Scott F.; Levey, Douglas J.; Greenberg, Cathryn H.; Martinez del Rio, Carlos
  • Publication Year: 2003
  • Publication Series: Miscellaneous Publication
  • Source: Oecologia 135: 516-523

Abstract

The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica cororzatn) to determine g15N and g13C turnover rates for blood, g15N and '" diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for 6I3c and from 0.5 to 1.7 days for S"N . Half-life did not differ among diets. Whole blood half-life for 6'" ranged from 3.9 to relative to diet for birds on diets with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures require use of nixing models that incorporate elemental concentration.

  • Citation: Pearson, Scott F.; Levey, Douglas J.; Greenberg, Cathryn H.; Martinez del Rio, Carlos 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia 135: 516-523
  • Keywords: Dendroica coronata, diet reconstruction, diet-tissue relationship, Discrimination, Stable isotope turnover
  • Posted Date: April 1, 1980
  • Modified Date: August 22, 2006
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.