Summary of Stream Habitat Inventories in the North River; North River Ranger District, George Washington Jefferson National Forest, Virginia 2014

United States Department of Agriculture Forest Service
Southern Research Station
Center for Aquatic Technology Transfer
1710 Research Center Drive
Blacksburg, VA 24060-6349

C. Andrew Dolloff, Team Leader

Report prepared by:
Colin Krause¹, Craig Roghair¹, and Dawn Kirk²
March 2015

¹USDA Forest Service
Southern Research Station
Center for Aquatic Technology Transfer
1710 Research Center Dr.
Blacksburg, VA 24060

²USDA Forest Service
George Washington and Jefferson National Forests
27 Ranger Lane
Natural Bridge Station, VA 24579
Introduction

Land use practices such as logging, clearing for agriculture, road building, and stream channelization have resulted in long-term impairment in streams throughout the southeastern United States. Stream bank and channel erosion, channel down-cutting, and the loss of structural habitat elements, particularly large wood, have greatly simplified streams and decreased habitat suitability for a variety of fish species, including Brook Trout *Salvelinus fontinalis* (the only salmonid native to the Eastern US). Efforts to restore habitat complexity include construction of instream enhancement structures typically comprised of natural materials such as large wood and boulders. Structures increase pool volume, depth, and frequency, promote flushing of fine sediment, sorting and deposition of spawning gravels, and enhance refuge habitat (particularly during periods of low flow) (House and Boehne 1985, Nagayama and Nakamura 2010, Riley and Fausch 1995, Roni et al. 2008, Seehorn 1992). Numerous studies have demonstrated that these manipulations of stream habitat increase the abundance, biomass, and spawning of salmonids and other fishes (House and Boehne 1985, Nagayama and Nakamura 2010, Riley and Fausch 1995, Roni et al. 2008, White et al. 2011).

Although artificial structures composed of large wood are not permanent, similar to natural structures they will eventually decompose and decrease in effectiveness, they nonetheless can contribute to habitat complexity and fish (trout) abundance for well over 20 years (White et al. 2011). Structures comprised of rock, such as large boulders, are often used instead of or in addition to large wood structures to create long-term habitat complexity. While most studies have found that instream structures result in a positive response (e.g. increased abundance and enhanced spawning) by salmonids, the results are less definitive for nonsalmonids and macroinvertebrates (Nagayama and Nakamura 2010, Roni et al. 2008). To maximize the benefits of restoration, structures must be designed for the type of stream and habitat requirements of fish and other aquatic species (Nagayama and Nakamura 2010). Furthermore, factors such as instream flow, water quality, riparian shade, erosion potential, etc., must also be addressed (Roni et al. 2008). Finally, even though the benefits of large wood and rock structures may last decades, the ultimate goal of restoration is to restore the natural processes that sustain seasonal flow patterns, maintain habitat complexity, and provide for natural recruitment of large wood (Nagayama and Nakamura 2010).

The North River, located in the Appalachian Mountains of Virginia, flows east from an elevation of 1,100 m through the George Washington-Jefferson National Forest (GWJNF), past Bridgewater, VA, and into the South Fork Shenandoah River. On June 17th 1949, a steady rain fell throughout the day and night resulting in a catastrophic flood, which claimed 3 lives, damaged over 100 homes, and washed out roads and bridges (CSPDC 2013, HRHS 2008). Following this flood, large portions of the North River above Elkhorn Lake were channelized in an effort to protect the reconstructed roadway and bridges. Between 1959 and 1965, 69 gabion walls, 7 cross-channel weirs, and 17 in-channel wing deflectors
(groins) were installed within a 9.3 km reach of river. Although intended to stabilize and control the river, these structures caused excessive down-cutting in some areas, and deposition of cobble-sized materials in others. In November of 1985 Hurricane Juan removed or buried many of these structures, resulting in further disruption of pool/riffle topology and loss of habitat complexity. Consequently, large sections of the stream dewater during periods of low flow, particularly during the summer.

The goals of this project are to restore the morphology of the stream channel, to enhance the channel’s resiliency to extreme events, and ultimately, to provide a fishery for native Brook Trout in a section of the North River from the road-less area boundary downstream to Elkhorn Reservoir. A series of cross-vane and J-hook in-stream structures made of rock and wood have been installed to create and maintain low-water pools that will serve as essential habitat during droughts and seasonal low-flow periods. Additionally, deteriorating gabions were removed to allow the river to access its floodplain and a bankfull bench was established.

We inventoried selected sections of the North River within the North River Ranger District, GWJNF, Virginia, in 2002 (June 24-25) and 2005 (June 20-30) prior to stream habitat modification and in 2014 (August 19-20) after restoration to quantify stream habitat conditions. We employed the basinwide visual estimation technique (BVET) (Dolloff et. al 1993) to inventory stream sections selected by Dawn Kirk (GWJNF Fish Biologist) within a 5 km section between the confluence with the Little River and the road 95 bridge, located approximately 450 m downstream of the confluence with Trout Run (Figure 1).

Methods

We used a two-stage visual estimation technique to quantify stream habitat. During the first stage, habitat was stratified into similar groups based on naturally occurring habitat units including pools (areas in the stream with concave bottom profile, gradient equal to zero, greater than average depth, and smooth water surface), and riffles (areas in the stream with convex bottom profile, greater than average gradient, less than average depth, and turbulent water surface). Glides (areas in the stream similar to pools, but with average depth and flat bottom profile) were identified during the inventory, but were grouped with pools for data analysis. Runs (areas in the stream similar to riffles but with average depth, less turbulent flow, and flat bottom profile) and cascades (areas in the stream with > 12% gradient, high velocity, and exposed bedrock or boulders) were grouped with riffles for data analysis.

The inventoried reach was broken into two sections. Section D extends from the upstream end of Elkhorn Lake to the Forest Road 95 bridge. Section E extends from the upstream end of section D to the confluence with the Little River. In 2002, only section D was inventoried (Fitzpatrick et. al 2003). In 2005, sections A, B, C, D, and E were inventoried (Ivasauskas et al. 2006). In 2014, sections D (5.3 km) and E (5.1 km) were inventoried (Table 1). During data analysis, Section E data was further split to
assess differences between the lower portion without restoration structures (Section E Lower, 2.3 km, extending from Rd. 95 bridge near Rd. 528 upstream to Rd. 95 bridge near Trout Run) and the upper portion with restoration structures (Section E Upper, 2.8 km, extending from Rd. 95 bridge near Trout Run upstream to confluence with Little River) (Table 1).

Habitat in each section of stream was classified and inventoried by a 2 or 3 person crew. One crew member identified each habitat unit by type (as described above), estimated average wetted width, average and maximum depth, riffle crest depth (RCD), substrate composition, and percent fines. The length of each habitat unit was measured with a hip chain. Average wetted width was visually estimated. Average and maximum depth of each habitat unit were estimated by taking depth measurements at various places across the channel profile with a graduated staff marked in 5 cm increments. The RCD was estimated by measuring water depth at the deepest point in the hydraulic control between riffles and pools. The RCD was subtracted from average pool depth to obtain an estimate of residual pool depth. Substrates were assigned to one of nine size classes (Appendix A). Dominant substrate (covered greatest amount of surface area in habitat unit) and subdominant substrate (covered 2nd greatest amount of surface area in habitat unit) were visually estimated. Percent fines is the percent surface area of the stream bed consisting of sand, silt, or clay substrate particles (particles < 2 mm diameter). In addition, several attributes of road-stream crossings (location, type, size, etc.) were recorded, where encountered.

The second crew member classified and inventoried large wood (LW) within the bankfull channel and recorded all data. LW was assigned to one of four size classes (Appendix A). All wood less than 1.0 m long and less than 10 cm in diameter were omitted from the inventory.

The first unit of each habitat type selected for intensive (second stage) sampling (e.g. accurate measurement of wetted width) was determined randomly. Additional units were selected systematically (every 10th habitat unit type for streams >1000 m and every 5th habitat unit type for streams <500 m). The wetted width of each systematically selected habitat unit was measured with a meter tape across at least three transects and averaged. In each of the systematically selected (second stage) riffles we also measured the bankfull channel width, left and right channel’s riparian width, channel gradient, and water temperature, as well as took a photograph. Bankfull channel width was determined by measuring the width of the bankfull channel perpendicular to flow. Riparian width was measured from the edge of the bankfull channel to the intersection with the nearest landform at an elevation equal to two-times maximum bankfull depth as described by Rosgen (1996). Gradient was estimated by using a clinometer to site from the downstream to the upstream end of the selected riffle. These measurements enabled the Rosgen channel type to be calculated (Rosgen 1996 and Appendix A). Water temperature was measured with a thermometer in flowing water, out of direct sunlight.
All estimates, measurements, and confidence intervals from the BVET inventories were summarized using Microsoft Excel and formulas found in Dolloff et al. (1993). See Appendix A for detailed field methods.

Results

BVET stream habitat inventories were completed on the North River in 2002, 2005, and 2014 for Section D (confluence with Elkhorn Lake to Rd. 95 bridge near Rd. 528), and 2005 and 2014 for Section E (Rd. 95 bridge near Rd. 528 to confluence with Little River) (Table 1 and Figure 1). The BVET habitat distance inventoried was 5.3-5.9 km for Section D and 5.0-5.1 km for Section E; the difference in distance inventoried between sample years is due to variability in measurement, not different start or end locations (Table 1). Our analysis of stream habitat before and after the addition of structures focuses on Section E Lower (2.3 km) and Section E Upper (2.8 km). Section D serves as a reference to help assess whether any changes in habitat within Section E were influenced by the added structures or resulted from other factors such as changes in flow. GPS coordinates for the start and end locations of the inventories are available in Table 2. We attempted to conduct inventories during similar flow conditions to the previous inventories, and while the 2014 flow conditions were similar to 2002 and 2005, they were also the lowest of all inventory years (Table 3).

Habitat Area

Between 2005 and 2014, Section E Lower had a small increase in pool area (2,578 to 2,620 m²; +42 m²), a percent area increase of 19% to 26% (+7%), and a pool unit count increase of 23 to 31 (+8) (Table 4, Figure 2). Section E Upper had a greater increase in pool area (1,205 to 2,382 m²; +1,177 m²), a percent area increase of 8% to 19% (+11%), and a pool unit count increase of 18 to 43 (+25) (Table 4, Figure 2). Pool area results including confidence intervals, show that pool area for 2014 Section E and 2014 Section E Upper are statistically different from pool area for 2005 Section E and 2005 Section E Upper (we were unable to calculate C.I. for dewatered area, i.e. channel without water, because width was not measured in these units) (Figure 3, Table 4). Pool area in Section E Lower was not statistically different between 2005 and 2014 (Figure 3, Table 4).

Coinciding with these pool area increases, were riffle area decreases (Table 4, Figure 2 and 3). In Section E Lower, riffle area decreased 5,600 m² or 28% (Table 4). In Section E Upper, riffle area decreased 3,852 m² or -14% (Table 4). Though riffle area decreased in 2014, the count of fast water habitat units increased (Table 4).

Between 2002 and 2005, Section D had a decrease in pool area (-2,571 m²; -9%) and pool unit count (-36) (Table 4, Figure 2). Then between 2005 and 2014, Section D had an increase in pool area
(+436 m²; +5%) and pool unit count (+45) (Table 4, Figure 2). Pool area results including confidence intervals, show that the 2014 and 2005 Section D pool areas are not statistically different from one another, but the 2005 pool area is statistically less than that of 2002 (we were unable to calculate C.I. for dewatered area because width was not measured in these units) (Figure 3, Table 4).

Dewatered Channel

The amount of dewatered channel increased in 2014 compared to all previous inventories (Table 4, Figure 2). Compared to 2005, the percent area of dewatered channel in 2014 increased in Section E Lower (+22%) and Section E Upper (+4%) (Table 4). In Section D, the percent area of dewatered channel increased +15% between 2014 and 2005, and +5% between 2014 and 2002 (Table 4). The location of the dewatered reaches within Section D and E are shown in Figure 4.

Large Wood

The amount of total large wood per kilometer (LW/km) increased from 2005 to 2014 in both Section E Lower (+94 pieces LW/km) and Upper (+56 pieces LW/km), as well as in Section D (+105 pieces LW/km) (Table 5, Figure 5). These increases occurred in small diameter size classes (LW1 and LW3, 10-55 cm diameter) and rootwads (RW) (Table 5, Figure 5). Compared to prior years, the 2014 quantity and frequency of large wood increased throughout the inventoried reaches (Figure 6 and 7).

Substrate and Percent Fines

In pools, the dominant substrate was most frequently large gravel, cobble, and boulder; the substrate type small gravel was also present, but typically as a subdominant substrate (Table 6, Figures 8-10). In riffles, the dominant substrate was most frequently large gravel and cobble; the substrate types small gravel and boulder were also present, but most often as a subdominant substrate (Table 6, Figures 8-10). The presence of large gravel, cobble, and boulder substrate in pools, and large gravel and cobble substrate in riffles is fairly consistent throughout the inventoried reaches (Figures 12-16).

The average percent fines (percent of habitat unit’s channel bottom covered by sand, silt, or clay) in pools was low (i.e. ≤35%) in all inventories, and declined further in 2014 (Table 7). The percent fines in riffles were lower still, never exceeding an average of 8% in any of the inventories (Table 7). In 2005 and 2014, the presence of fines was consistently low throughout the inventoried reach length in Section E; in Section D only two pools at ~3,400 m in 2014 ever exceeded 35% (Figures 17-18).
Depth and Width

For all inventories, the mean average depths (pools 28-35 cm; riffles 8-13 cm) and maximum depths (pools 47-67 cm; riffles 18-26 cm) were relatively similar (Table 7). Mean residual pool depth (the riffle crest depth was subtracted from average pool depth to obtain an estimate of residual pool depth which could occur during low flow conditions) ranged from 18 cm to 29 cm among inventories (Table 7). There was a greater increase in mean residual pool depth between 2005 and 2014 in Section E Lower (+11 cm) than in Section E Upper (+3 cm) (Table 7). In Section D, between 2005 and 2014, there was a 6 cm decrease in mean residual pool depth (Table 7).

The inventoried reaches were interspersed with deep pools, but maximum depths were typically <60 cm (Figures 19-20). In 2014, the occurrence of pools in Section E Upper become more frequent and numerous than they were in 2005 (Figure 20).

The average wetted pool and riffle widths were similar among all inventories (pools 4.3-4.8 m; riffles 4.2-5.1 m) (Table 7).

Discussion

By 2014, the amount of pool habitat area doubled and the number of pool habitat units significantly increased in Section E Upper due to the addition of stream channel structures. Pool area and distribution in Section E Lower, without additional structures, did not change significantly. Percent pool habitat area only increased +11% due to the large amount of dewatered stream channel present in 2014. Though stream flow was less in 2014 than in previous inventoried years, which certainly contributed to the large percent increase in dewatered area between 2005 and 2014 (+15% in Section D and +22% in Section E Lower), Section E Upper had only a minimal increase in dewatered habitat (+4%). Whether this is due to the restoration structures mitigating the loss of water from the channel, or simply the geology of Section E Upper, is unknown. The fact that in Section D, the amount of dewatered habitat decreased -10% between 2002 and 2005, and then increased +15% between 2005 and 2014, when flows were similar, shows that subtle changes in hydrology have noticeable impacts on stream flow. Furthermore, the increases and decreases in pool, riffle, and dewatered habitat area among the years in Section D, which has had no restoration modifications, indicates that flow events are shifting habitat around via high bed-load movements. The restoration structures are also a possible reason for the more than doubling of fast water habitat units in Section E Upper, which by creating pool habitat split up long riffles.

In addition to the habitat benefits created by the restoration structures, the increased quantities of large wood seen during our 2014 inventories (occurring from natural recruitment) will further promote pool habitat creation. This in turn will increase habitat complexity and the ability of the channel to
maintain summer surface flow. We expect this trend to continue, as well as be supplemented by increased recruitment of eastern hemlock trees being killed by the hemlock wooly adelgid. Future recruitment of large wood will depend on replacement of eastern hemlock in near stream riparian areas with other woody species. As habitat complexity increases, the likelihood that large wood will remain within the sections rather than being flushed out during high flow events also increases, leading to development of a self-sustaining system.

The addition of 53 instream enhancement structures resulted in the creation of ~1,200 m² of pool habitat. Although we do not have population information on the fish assemblages of the North River, an increase in pool habitat is likely to be beneficial to Brook Trout populations (Nagayama and Nakamura 2010, Roni et al. 2008), particularly during summer or any period of low flow. With the increase in pool habitat, it seems likely that trout survival during dry summers has been improved. We recommend sampling the fish assemblages of the North River to further assess the effectiveness of the restoration project. Additionally, repetition of habitat surveys (e.g. in 2019 or 2024) will provide evidence of habitat longevity and persistence.

Data Availability

Summer 2014 stream habitat data reside in a MS Access database, which is managed by the CATT, and a copy has been provided to Dawn Kirk, GWJNF Forest Fish Biologist. We will work with the GWJNF to develop custom queries and reports for the MS Access database, as needed.
Literature Cited

Seehorn, M. E. 1992. Stream habitat improvement handbook. Technical Publication R8-TP 16, USDA Forest Service, Southern Region, 1720 Peachtree Road, N. W., Atlanta, GA.

Figure 1. Location of BVET inventoried reaches, Section D and Section E, on the North River; North River Ranger District, George Washington National Forest, Virginia.
Figure 2. Percent pool (includes glides), riffle (includes runs), and dewatered (i.e. channel without water) habitat area. Upper graph shows Sections D and E; lower graph splits Section E into a lower (no restoration) and upper section (restoration structures). Note that dewatered area was calculated using average wetted riffle width because widths were not measured for dewatered habitat.

*restoration structures present
Figure 3. Total pool (includes glides) and riffle (includes runs) habitat area (m2). Upper graph shows Sections D and E; lower graph splits Section E into a lower (no restoration) and upper section (restoration structures).

*restoration structures present
Figure 4. Start and end locations of dewatered (i.e. channel without water) reaches in Section D and E during the 2002, 2005, and 2014 inventories (triangle = location of Section E Lower versus upper split). Note that due to variability in inventoried BVET habitat distances between years, dewatered sections may be offset from one another by ~600 m in Section D and ~100 m in Section E when comparing between years.
Figure 5. Quantity of large wood (LW; dead and down, any part within bankfull channel) per kilometer. LW size classes: LW1 = 1-5 m length, 10-55 cm diameter; LW2 = 1-5 m length, >55 cm diameter; LW3 = >5 m length, 10-55 cm diameter; LW4 = >5 m length, >55 cm diameter; RW = rootwad. Upper graph shows Sections D and E; lower graph splits Section E into a lower (no restoration) and upper section (restoration structures).

*restoration structures present
+ 2014 LW/Km dewatered reaches included
Figure 6. Count of large wood (bars = size classes 1, 2, 3, 4, and rootwad combined; open circles = size 4 only) within Section D in 2002, 2005, and 2014. Counts of large wood occurred within pools, glides, riffles, and runs (counts within dewatered sections in 2014 are excluded for comparison with prior years).
Figure 7. Count of large wood (bars = size classes 1, 2, 3, 4, and rootwad combined; open circles = size 4 only) within Section E in 2005 and 2014 (triangle = location of Section E Lower versus upper split). Counts of large wood occurred within pools, glides, riffles, and runs (counts within dewatered sections in 2014 are excluded for comparison with prior years).
Figure 8. Cumulative percent occurrence of dominant and subdominant substrate size categories in pools (includes glides) and riffles (includes runs) within Section D in 2002, 2005, and 2014. See appendix A for substrate size categories.
Figure 9. Cumulative percent occurrence of dominant and subdominant substrate size categories in pools (includes glides) and riffles (includes runs) within Section E in 2005 and 2014. See appendix A for substrate size categories.
Figure 10. Cumulative percent occurrence of dominant and subdominant substrate size categories in pools (includes glides) and riffles (includes runs) within Section E Lower (no restoration) in 2005 and 2014. See appendix A for substrate size categories.
Figure 11. Cumulative percent occurrence of dominant and subdominant substrate size categories in pools (includes glides) and riffles (includes runs) within Section E Upper (restoration structures) in 2005 and 2014. See appendix A for substrate size categories.
Figure 12. Dominant (solid circles) and subdominant (open circles) substrate category present in each pool (upper graph) and riffle (lower graph) within Section D in 2002. Substrate size categories: 1 Organic Matter = dead leaves, detritus, etc.; 2 Clay = sticky, holds form; 3 Silt = slippery, doesn’t hold form; 4 Sand = silt-2 mm; 5 Small Gravel = 3-16 mm; 6 Large Gravel = 17-64 mm; 7 Cobble = 65-256 mm; 8 Boulder = >256 mm; 9 Bedrock = solid rock.
Figure 13. Dominant (solid circles) and subdominant (open circles) substrate category present in each pool (upper graph) and riffle (lower graph) within Section D in 2005. Substrate size categories: 1 Organic Matter = dead leaves, detritus, etc.; 2 Clay = sticky, holds form; 3 Silt = slippery, doesn’t hold form; 4 Sand = silt-2 mm; 5 Small Gravel = 3-16 mm; 6 Large Gravel = 17-64 mm; 7 Cobble = 65-256 mm; 8 Boulder = >256 mm; 9 Bedrock = solid rock.
Figure 14. Dominant (solid circles) and subdominant (open circles) substrate category present in each pool (upper graph) and riffle (lower graph) within Section D in 2014. Substrate size categories: 1 Organic Matter = dead leaves, detritus, etc.; 2 Clay = sticky, holds form; 3 Silt = slippery, doesn’t hold form; 4 Sand = silt-2 mm; 5 Small Gravel = 3-16 mm; 6 Large Gravel = 17-64 mm; 7 Cobble = 65-256 mm; 8 Boulder = >256 mm; 9 Bedrock = solid rock.
Figure 15. Dominant (solid circles) and subdominant (open circles) substrate category present in each pool (upper graph) and riffle (lower graph) within Section E in 2005 (triangle = location of Section E Lower versus upper split). Substrate size categories: 1 Organic Matter = dead leaves, detritus, etc.; 2 Clay = sticky, holds form; 3 Silt = slippery, doesn’t hold form; 4 Sand = silt-2 mm; 5 Small Gravel = 3-16 mm; 6 Large Gravel = 17-64 mm; 7 Cobble = 65-256 mm; 8 Boulder = >256 mm; 9 Bedrock = solid rock.
Figure 16. Dominant (solid circles) and subdominant (open circles) substrate category present in each pool (upper graph) and riffle (lower graph) within Section E in 2014 (triangle = location of Section E Lower versus upper split). Substrate size categories: 1 Organic Matter = dead leaves, detritus, etc.; 2 Clay = sticky, holds form; 3 Silt = slippery, doesn’t hold form; 4 Sand = silt-2 mm; 5 Small Gravel = 3-16 mm; 6 Large Gravel = 17-64 mm; 7 Cobble = 65-256 mm; 8 Boulder = >256 mm; 9 Bedrock = solid rock.
Figure 17. Percent of each pool (solid circles) and riffle (open circles) channel bottom comprised of fine sediment (sand, silt, and/or clay) within Section D in 2005 and 2014 (% fines data was not collected in 2002).
Figure 18. Percent of each pool (solid circles) and riffle (open circles) channel bottom comprised of fine sediment (sand, silt, and/or clay) within Section E in 2005 and 2014 (triangle = location of Section E Lower versus upper split).
Figure 19. Maximum pool depth (bars) and residual pool depth (circles) shown longitudinally within Section D in 2002, 2005, and 2014.
Figure 20. Maximum pool depth (bars) and residual pool depth (circles) shown longitudinally within Section E in 2005 and 2014 (triangle = location of Section E Lower versus upper split).
Table 1. Summary of BVET inventories on the North River, North River Ranger District, George Washington Jefferson National Forest, VA. Summary includes Sections D and E, as well as Section E split into a lower (no restoration) and upper section (restoration structures).

<table>
<thead>
<tr>
<th>Stream Name</th>
<th>District</th>
<th>Topo Quad</th>
<th>Start Location</th>
<th>End Location</th>
<th>Date</th>
<th>BVET habitat (km)*</th>
<th>Restoration Structures?</th>
</tr>
</thead>
<tbody>
<tr>
<td>North River, Section D</td>
<td>Dry River</td>
<td>Stokesville</td>
<td>Confluence with Elkhorn Lake</td>
<td>Rd. 95 bridge near Rd. 528</td>
<td>6/24/2002 6/25/2002</td>
<td>5.9</td>
<td>No</td>
</tr>
<tr>
<td>North River, Section E</td>
<td>Dry River</td>
<td>West August</td>
<td>Rd. 95 bridge near Rd. 528</td>
<td>Confluence with Little River</td>
<td>6/30/2005 7/1/2005</td>
<td>5.0</td>
<td>No</td>
</tr>
<tr>
<td>North River, Section E Lower</td>
<td>Dry River</td>
<td>West August</td>
<td>Rd. 95 bridge near Rd. 528</td>
<td>Rd. 95 bridge downstream of Trout Run</td>
<td>6/30/2005 6/30/2005</td>
<td>2.3</td>
<td>No</td>
</tr>
<tr>
<td>North River, Section E Upper</td>
<td>Dry River</td>
<td>West August</td>
<td>Rd. 95 bridge downstream of Trout Run</td>
<td>Confluence with Little River</td>
<td>6/20/2014 6/20/2014</td>
<td>2.8</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Difference in inventoried BVET habitat distance is due to variability in measurement, not different start or end locations
Table 2. GPS coordinates recorded at the downstream (start) and upstream (end) extent of stream habitat inventories.

<table>
<thead>
<tr>
<th>Stream Name</th>
<th>GPS (UTM NAD83)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Downstream Inventory Start</td>
</tr>
<tr>
<td>North River, Section D</td>
<td>17 S 654547 4243837</td>
</tr>
<tr>
<td>North River, Section E</td>
<td>17 S 651367 4247631</td>
</tr>
<tr>
<td>North River, Section E Lower</td>
<td>17 S 651367 4247631</td>
</tr>
<tr>
<td>North River, Section E Upper</td>
<td>17 S 649970 4249129</td>
</tr>
</tbody>
</table>

Table 3. Flow (cfs) on each day BVET data was inventoried (USGS flow gage #01620200, North River near Stokesville, VA).

<table>
<thead>
<tr>
<th>Daily Mean Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
</tr>
<tr>
<td>June 24, 2002</td>
</tr>
<tr>
<td>June 30, 2005</td>
</tr>
<tr>
<td>August 19, 2014</td>
</tr>
</tbody>
</table>
Table 4. Stream area in pools (i.e. slow water units = pools and glides) and riffles (i.e. fast water units = riffles and runs) as observed during BVET habitat inventories. Summary includes Sections D and E, as well as Section E split into a lower (no restoration) and upper section (restoration structures).

<table>
<thead>
<tr>
<th>Stream Name</th>
<th>Year</th>
<th>Pool (m²) ±</th>
<th>Riffle (m²) ±</th>
<th>Dewatered** (m²) ±</th>
<th>Total (m²)</th>
<th>Pool %</th>
<th>Riffle %</th>
<th>Dewatered %</th>
<th>Pools + Glides Units</th>
<th>Riffles + Runs Units</th>
<th>Unit Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>North R., Section D</td>
<td>2002</td>
<td>10,335</td>
<td>13,912</td>
<td>5,156</td>
<td>29,404</td>
<td>35%</td>
<td>47%</td>
<td>18%</td>
<td>92+9 = 101</td>
<td>82+2 = 84</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>7,328</td>
<td>18,249</td>
<td>2,271</td>
<td>27,848</td>
<td>26%</td>
<td>66%</td>
<td>8%</td>
<td>60+5 = 65</td>
<td>65+2 = 64</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>7,764</td>
<td>11,604</td>
<td>5,744</td>
<td>25,112</td>
<td>31%</td>
<td>46%</td>
<td>23%</td>
<td>89+21 = 110</td>
<td>79+0 = 79</td>
<td>21</td>
</tr>
<tr>
<td>North R., Section E</td>
<td>2005</td>
<td>3,736</td>
<td>24,432</td>
<td>350</td>
<td>28,518</td>
<td>13%</td>
<td>86%</td>
<td>1%</td>
<td>28+13 = 41</td>
<td>35+0 = 35</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2014*</td>
<td>5,019</td>
<td>24,635</td>
<td>3,434</td>
<td>28,518</td>
<td>13%</td>
<td>86%</td>
<td>1%</td>
<td>40+14 = 74</td>
<td>64+0 = 64</td>
<td>9</td>
</tr>
<tr>
<td>North R., Section E Lower</td>
<td>2005</td>
<td>2,578</td>
<td>10,854</td>
<td>153</td>
<td>13,585</td>
<td>19%</td>
<td>80%</td>
<td>1%</td>
<td>14+9 = 23</td>
<td>20+0 = 20</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>2,620</td>
<td>5,254</td>
<td>2,315</td>
<td>10,189</td>
<td>26%</td>
<td>52%</td>
<td>23%</td>
<td>26+6 = 31</td>
<td>23+0 = 23</td>
<td>6</td>
</tr>
<tr>
<td>North R., Section E Upper</td>
<td>2005</td>
<td>1,205</td>
<td>13,667</td>
<td>203</td>
<td>15,075</td>
<td>8%</td>
<td>91%</td>
<td>1%</td>
<td>14+4 = 18</td>
<td>15+0 = 15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2014*</td>
<td>2,382</td>
<td>9,815</td>
<td>620</td>
<td>12,817</td>
<td>19%</td>
<td>77%</td>
<td>5%</td>
<td>35+8 = 43</td>
<td>41+0 = 41</td>
<td>3</td>
</tr>
</tbody>
</table>

*restoration structures present

**dewatered area calculated using average wetted riffle width because widths were not measured for dewatered habitat
Table 5. Large wood (LW) per kilometer observed during BVET habitat inventories. LW size classes: LW1 = 1-5 m length, 10-55 cm diameter; LW2 = 1-5 m length, >55 cm diameter; LW3 = >5 m length, 10-55 cm diameter; LW4 = >5 m length, >55 cm diameter; RW = rootwad. Summary includes Sections D and E, as well as Section E split into a lower (no restoration) and upper section (restoration structures).

<table>
<thead>
<tr>
<th>Stream Name</th>
<th>Year</th>
<th>Large Wood per Km</th>
<th>Large Wood Count in Sample Reach</th>
<th>Inventory Count</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LW1/ km</td>
<td>LW2/ km</td>
<td>LW3/ km</td>
<td>LW4/ km</td>
</tr>
<tr>
<td>North River, Section D</td>
<td>2002</td>
<td>46</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>48</td>
<td>1</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2014*</td>
<td>68</td>
<td>1</td>
<td>67</td>
<td>3</td>
</tr>
<tr>
<td>North River, Section E</td>
<td>2005</td>
<td>13</td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2014*</td>
<td>54</td>
<td>1</td>
<td>59</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2014**</td>
<td>67</td>
<td>1</td>
<td>68</td>
<td>3</td>
</tr>
<tr>
<td>North River, Section E Lower</td>
<td>2005</td>
<td>11</td>
<td>0</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>60</td>
<td>0</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>North River, Section E Upper</td>
<td>2005</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2014*</td>
<td>26</td>
<td>0</td>
<td>34</td>
<td>1</td>
</tr>
</tbody>
</table>

*restoration structures present
+ LW data includes counts within dewatered reaches (this data was not collected in 2002 and 2005)
Table 6. Percent occurrence of dominant and subdominant substrate size categories in pools (includes glides) and riffles (includes runs) in each stream inventoried. See appendix A for substrate size categories.

<table>
<thead>
<tr>
<th>Stream Name</th>
<th>Year</th>
<th>Pool Dominant Substrate</th>
<th>Riffle Dominant Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>North River, Section D</td>
<td>2002</td>
<td>0% 0% 0%</td>
<td>0% 0%</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0% 0% 0%</td>
<td>0% 0%</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>0% 0% 0%</td>
<td>0% 0%</td>
</tr>
<tr>
<td>North River, Section E</td>
<td>2005</td>
<td>0% 0% 0%</td>
<td>0% 0%</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>0% 0% 0%</td>
<td>0% 0%</td>
</tr>
<tr>
<td>North River, Section E Lower</td>
<td>2005</td>
<td>0% 0% 0%</td>
<td>0% 0%</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>0% 0% 0%</td>
<td>0% 0%</td>
</tr>
<tr>
<td>North River, Section E Upper</td>
<td>2005</td>
<td>0% 0% 0%</td>
<td>0% 0%</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>0% 0% 0%</td>
<td>0% 0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stream Name</th>
<th>Year</th>
<th>Pool Subdominant Substrate</th>
<th>Riffle Subdominant Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>North River, Section D</td>
<td>2002</td>
<td>4% 0% 0%</td>
<td>0% 0% 0%</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0% 0% 0%</td>
<td>0% 0% 0%</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>0% 0% 0%</td>
<td>0% 0% 0%</td>
</tr>
<tr>
<td>North River, Section E</td>
<td>2005</td>
<td>0% 0% 0%</td>
<td>0% 0% 0%</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>0% 0% 0%</td>
<td>0% 0% 0%</td>
</tr>
<tr>
<td>North River, Section E Lower</td>
<td>2005</td>
<td>0% 0% 0%</td>
<td>0% 0% 0%</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>0% 0% 0%</td>
<td>0% 0% 0%</td>
</tr>
<tr>
<td>North River, Section E Upper</td>
<td>2005</td>
<td>0% 0% 0%</td>
<td>0% 0% 0%</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>0% 0% 0%</td>
<td>0% 0% 0%</td>
</tr>
</tbody>
</table>
Table 7. Summary of BVET stream habitat attribute averages collected. Summary includes Sections D and E, as well as Section E split into a lower (no restoration) and upper section (restoration structures).

<table>
<thead>
<tr>
<th>Stream Name</th>
<th>Year</th>
<th>Mean Avg. Depth (cm)</th>
<th>Mean Max. Depth (cm)</th>
<th>Mean Residual Pool Depth (cm)**</th>
<th>Avg. Wetted Width (m)</th>
<th>Avg. % Fines</th>
</tr>
</thead>
<tbody>
<tr>
<td>North River, Section D</td>
<td>2002</td>
<td>35 13</td>
<td>51 20</td>
<td>26</td>
<td>4.3 4.7</td>
<td>NA NA B,C</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>35 10</td>
<td>61 20</td>
<td>25</td>
<td>4.3 5.1</td>
<td>11 4 C</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>28 11</td>
<td>47 18</td>
<td>19</td>
<td>4.4 4.5</td>
<td>14 8 C,F</td>
</tr>
<tr>
<td>North River, Section E</td>
<td>2005</td>
<td>33 13</td>
<td>62 24</td>
<td>19</td>
<td>4.8 5.0</td>
<td>18 8 B,C</td>
</tr>
<tr>
<td></td>
<td>2014*</td>
<td>32 9</td>
<td>53 21</td>
<td>26</td>
<td>4.4 4.3</td>
<td>6 4 C,F</td>
</tr>
<tr>
<td>North River, Section E Lower</td>
<td>2005</td>
<td>33 12</td>
<td>59 23</td>
<td>18</td>
<td>4.8 4.8</td>
<td>17 8 B,C</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>32 8</td>
<td>53 19</td>
<td>29</td>
<td>4.4 4.5</td>
<td>7 4 C,F</td>
</tr>
<tr>
<td>North River, Section E Upper</td>
<td>2005</td>
<td>33 15</td>
<td>67 26</td>
<td>21</td>
<td>4.7 5.2</td>
<td>19 8 B</td>
</tr>
<tr>
<td></td>
<td>2014*</td>
<td>33 10</td>
<td>52 22</td>
<td>24</td>
<td>4.4 4.2</td>
<td>5 4 C,F</td>
</tr>
</tbody>
</table>

*restoration structures present

**residual pool depth = average pool depth – riffle crest depth
Appendix A: Field Methods for Stream Habitat Inventory
Table of Contents

Introduction ... 2

References cited in this manual: ... 3

Changes to BVET inventory in 2014 ... 4

Outline of BVET Habitat Inventory ... 5

Section 1: Getting Started .. 6
 Equipment List ... 6
 Duties .. 6
 Header Information ... 6
 Random Numbers .. 7
 Starting the Inventory ... 7

Section 2: Stream Attributes .. 8
 NHD_ID (see map for ID number) ... 8
 Unit Type (see abbreviations) .. 9
 Unit Number (#) ... 10
 Distance (m) ... 11
 Estimated Width (m) ... 11
 Maximum and Average Depth (cm) .. 12
 Riffle Crest Depth (cm) ... 12
 Dominant and Subdominant Substrate (1-9) ... 13
 Rosgen Channel Type (A-G) .. 14
 Percent Fines (%) ... 15
 Large Wood (1-4 and rootwad) .. 15
 Actual Width (m) .. 16
 Photo # .. 16
 Features .. 17

Section 3: Wrapping Up ... 18

Section 4: Summary ... 19

Appendix: Field Guide, Random Numbers Table, Equipment Checklist ... 20
Introduction

The basinwide visual estimation technique (BVET) is a versatile tool used to assess streamwide habitat conditions in wadeable size streams and rivers. A crew of two individuals performs the inventory using two-stage visual estimation techniques described in Hankin and Reeves (1988) and Dolloff et al. (1993). In its most basic form the BVET combines visual estimates with actual measurements to provide a calibrated estimate of stream area with confidence intervals, however the crew may inventory any number of other habitat attributes as they walk length of the stream. Experienced crews can inventory an average of 2.0 – 3.0 km per day, but this will vary depending on stream size and the number of stream attributes inventoried.

Before a crew begins a BVET inventory they must receive adequate training, both in the classroom and in the field. Estimating and measuring a large number of habitat attributes can confuse and overwhelm an inexperienced crew. Individuals must have an understanding of the basic concepts behind the BVET and be familiar with habitat attributes before they can effectively and efficiently perform an inventory.

The USFS Center for Aquatic Technology Transfer (CATT) has been working directly with resource managers on the George Washington Jefferson National Forest (GWJNF) since the mid 1990’s to implement BVET inventories and adapt them to the Forest’s specific needs. More than 10 habitat attributes are currently estimated or measured during GWJNF BVET habitat inventories. We review the inventory annually and add and remove attributes as needed to maximize efficiency and relevancy with regards to emerging techniques and Forest issues. Changes are made only after careful review to ensure consistency with data collected in the past. Habitat surveys performed in 2004 followed methods identical to those used in National Forests in Virginia and changes to that survey are described in the ‘Changes to BVET inventory in 2014’ section.

This document was developed to serve as a guide for classroom and field instruction specific to the GWJNF BVET habitat inventory and to provide a post-training reference for field crews. It includes an overview of the BVET inventory, defines habitat attributes, instructs how and when to measure attributes, and provides reference sheets for use in the field. Each trainee should receive a copy of this manual and is encouraged to take notes in the spaces provided.
References cited in this manual:

Changes to BVET inventory in 2014

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start & End</td>
<td>Modified</td>
<td>The start and end location of the survey is a defined reach chosen by the GWJNF biologist.</td>
</tr>
<tr>
<td>Features</td>
<td>Modified</td>
<td>Rosgen measurements added; including bankfull channel width, max and average bankfull depth, left and right riparian width, gradient, and water temperature.</td>
</tr>
</tbody>
</table>

Other minor changes, mostly modifications in terminology and definitions to provide increased clarity, are found throughout the manual.
Outline of BVET Habitat Inventory

The inventory is comprised of the following steps:

1) Enter ‘header’ information in the data sheet
 - ‘Header’ information includes date, stream, start location, crew, etc. and is vitally important to record for future reference

2) Select an appropriate measurement interval and a random number
 - In streams < 1.0 km measure every 5th unit (random number 1-5), in streams > 1.0 km measure every 10th unit (random number 1-10)
 - The random number designates the first habitat unit (i.e. the paired sample unit) in which the crew will perform measurements

3) Enter downstream of the starting point, then move upstream and begin the inventory
 - Tie off the hipchain, proceed upstream to the starting point, reset the hipchain to zero, and proceed upstream estimating parameters and recording data in every habitat unit

4) At the paired sample unit perform visual estimates, then perform measurements
 - If the random number ‘3’ were chosen, the crew would stop after making estimates in the 3rd pool (and 3rd riffle) and perform the necessary measurements

5) Progress upstream estimating attributes for every unit until the next paired sample unit is reached, then repeat step 4
 - In the above example, if the interval were 10 units, the crew would stop at the 13th, 23rd, 33rd, etc. pool (and 13th, 23rd, 33rd, etc. riffle) and repeat measurements done in pool 3 and riffle 3.
 - The crew should also take care to record roads, trails, tributaries, dams, waterfalls, road crossing types, riparian features (wildlife openings, trails, campsites, roads, timber harvest, etc.), and other pertinent stream features as they progress upstream. Be sure to record hipchain distances when noting such features.

Repeat steps 4 and 5 until the end of the stream is reached.

The following sections describe the BVET habitat inventory in detail:

Section 1: Getting Started – equipment lists, header information, random numbers, starting the inventory

Section 2: Habitat Attributes – definitions, how to estimate or measure, when to record

Section 3: Wrapping Up – what to do when the inventory is completed

Appendix: field guide, random number tables, equipment checklist
Section 1: Getting Started

Equipment List

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hipchain</td>
<td>backpack</td>
</tr>
<tr>
<td>extra string for hipchain</td>
<td>pencils</td>
</tr>
<tr>
<td>wading rod</td>
<td>flagging</td>
</tr>
<tr>
<td>50 m tape measure</td>
<td>markers</td>
</tr>
<tr>
<td>Datalogger</td>
<td>waterproof backup datasheets</td>
</tr>
<tr>
<td>GPS unit</td>
<td>BVET manual and field guide</td>
</tr>
<tr>
<td>topographic map</td>
<td>felt bottom wading boots or waders</td>
</tr>
<tr>
<td>camera</td>
<td></td>
</tr>
</tbody>
</table>

Other useful equipment: lunch, water, water filter, 1st aid kit, toilet paper, rain gear, radio/cell phone

The crew consists of two individuals, the ‘observer’ and the ‘recorder’. The observer wears the hipchain and carries the wading rod. The recorder wears the data logger and carries other equipment in the backpack. The duties of each individual are listed below.

Duties

<table>
<thead>
<tr>
<th>Observer</th>
<th>Recorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine NHD_ID</td>
<td>Locate changes in NHD_ID</td>
</tr>
<tr>
<td>Designate habitat units</td>
<td>Record data</td>
</tr>
<tr>
<td>Measure distance</td>
<td>Determine paired sample location</td>
</tr>
<tr>
<td>Estimate width</td>
<td>Classify and count LW</td>
</tr>
<tr>
<td>Estimate depths</td>
<td>Photo-documentation</td>
</tr>
<tr>
<td>Classify substrates</td>
<td>Document features</td>
</tr>
<tr>
<td>Estimate percent fines</td>
<td></td>
</tr>
</tbody>
</table>

Both crew members are needed to measure actual widths, channel widths, riparian areas, gradient, and water temperature at designated units. Although the crew has assigned duties, they should not hesitate to consult with each other if they have questions or feel that a mistake may have been made. Working as a team will provide the best possible results.

Header Information

Header information is **vitally important** for future reference. Take the time to record all categories completely and accurately.

<table>
<thead>
<tr>
<th>Stream Name</th>
<th>District</th>
<th>Quad</th>
<th>Date</th>
<th>Recorder</th>
<th>Observer</th>
<th>GPS</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full name of stream</td>
<td>National Forest District name</td>
<td>USGS 1:24,000 quadrangle name</td>
<td>Record date(s) of inventory</td>
<td>Full name of recorder</td>
<td>Full name of observer</td>
<td>record at start and end locations, always use NAD27 CONUS, UTM</td>
<td>Detailed written description of start point, include landmarks, road #, etc.</td>
<td>Record signs of activity in area, water conditions, other pertinent information</td>
</tr>
</tbody>
</table>
Random Numbers

Before beginning the inventory, select a number from a random numbers table (see Appendix) to determine the first habitat unit at which to make measurements. For long inventories (> 1.0 km) select a random number between 1 and 10\(^{th}\) (i.e. measure every 10 unit), for shorter streams use a number between 1 and 5 (i.e. measure every 5\(^{th}\) unit). See the appendix for random numbers tables.

The crew needs to measure units more frequently during shorter inventories to provide enough ‘paired samples’ for data analysis. ‘Paired samples’ are habitat units in which both visual estimates and actual measurements are made. The more paired samples, the tighter the confidence intervals for stream area estimates.

After the crew records a paired sample they continue upstream making visual estimates and stopping to make additional measurements at the pre-determined interval. For example, if the random number was 3 and the crew was measuring every 5\(^{th}\) unit, the crew would make measurements on the 3\(^{rd}\) pool and 3\(^{rd}\) riffle and then every 5\(^{th}\) pool and riffle thereafter (8, 13, 18, 23, etc).

Starting the Inventory

After the crew has organized their gear, determined their measurement interval, selected a random number, recorded all the header information, and determined the starting NHD_ID they are ready to begin the habitat inventory. The observer should enter the stream slightly downstream of the starting point, tie off the hipchain, progress upstream to the starting point, reset the hipchain to zero and begin walking upstream through the first habitat unit. As the observer moves upstream they use the wading rod to measure depth at several locations in the habitat unit and make observations of unit type, width, substrates, and percent fines. When they reach the upstream end of the habitat unit they stop, report the distance, then turn to face the unit and report the unit type, estimated width, maximum and average depth, riffle crest depth (where appropriate), dominant and subdominant substrate classes, and percent fines to the recorder.

As the observer moves upstream through the unit, the recorder follows behind, recording the amount of LW in the habitat unit. The recorder also assigns a number to the habitat unit. The recorder tells the observer if a unit is designated for measurements (i.e. if it is a ‘paired sample’ unit) only after they have recorded visual estimates.

The crew continues upstream making estimates in every habitat unit and making estimates and measurements in every paired sample unit until the inventory endpoint is reached. The crew needs to keep track of their location carefully to determine when they enter a new NHD_ID reach.

Definitions of habitat attributes, how to measure and when to record them, and what to do when the inventory is complete are covered in the following sections.
Section 2: Stream Attributes

NHD_ID (see map for ID number)

Definition:
Stream reach identification number assigned in the National Hydrography Dataset (NHD). A map delineating stream reaches with corresponding reach numbers is provided by the Forest prior to the start of the inventory.

How to estimate:
At the beginning of the inventory the crew determines the starting NHD_ID number from the provided maps. As the crew moves upstream they must carefully track their location and change the NHD_ID number when they move into a new NHD stream reach.

When to record: every habitat unit
Unit Type (see abbreviations)

Definitions*:

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riffle</td>
<td>R</td>
<td>Fast water, turbulent, gradient <12%: shallow reaches characterized by water flowing over or around rough bed materials that break the surface during low flows; also include rapids (turbulent with intermittent whitewater, breaking waves, and exposed boulders), chutes (rapidly flowing water within narrow, steep slots of bedrock), and sheets (shallow water flowing over bedrock) if gradient <12%</td>
</tr>
<tr>
<td>Cascade</td>
<td>C</td>
<td>Fast water, turbulent, gradient ≥12%: highly turbulent series of short falls and small scour basins, with very rapid water movement; also include sheets (shallow water flowing over bedrock) and chutes (rapidly flowing water within narrow, steep slots of bedrock) if gradient ≥12%</td>
</tr>
<tr>
<td>Run</td>
<td>RN</td>
<td>Fast water, non-turbulent, gradient <12%: deeper than riffles with little or no surface agitation or flow obstructions and a flat bottom profile</td>
</tr>
<tr>
<td>Pool</td>
<td>P</td>
<td>Slow water, surface turbulence may or may not be present, gradient <1%: generally deeper and wider than habitat immediately upstream and downstream, concave bottom profile; includes dammed pools, scour pools, and plunge pools</td>
</tr>
<tr>
<td>Glide</td>
<td>G</td>
<td>Slow water, no surface turbulence, gradient <1%: shallow with little to no flow and flat bottom profile</td>
</tr>
<tr>
<td>Underground</td>
<td>UNGR</td>
<td>Stream channel is dry or not containing enough water to form distinguishable habitat units</td>
</tr>
</tbody>
</table>

*modified from Armantrout (1998)

How to estimate:

Habitat units are separated by ‘breaks’. Breaks can be obvious physical barriers, such as a debris dam separating two pools or a small waterfall separating a pool and riffle, or may be less obvious transitional areas. Questions often arise as to whether a break is substantial enough to split two habitat units and where the exact location of the break occurs. When in doubt, the observer should consult with the recorder and the team should ‘think like a fish’. To determine if a break should be made, consider whether a fish would have to make an effort to move across the break and into the next habitat unit. If not, then it is probably a single habitat unit.

The channel may have both pool and riffle type habitat in the same cross-sectional area. Determine the predominate habitat type and record it as the unit type. For example if an area contains both pool and riffle, but the majority of the flow is into and out of the pool habitat, then call a pool.

Questions also often arise as to the minimum size of individual habitat units. Generally, if a habitat unit is not at least as long as the wetted channel is wide, then do not count it as a separate habitat unit. This rule may need to be adjusted for streams wider than 5 m. Use best professional judgment in such cases.

See the section 2.1 for a list of features that should also be recorded while performing the inventory.

When to record: every habitat unit
Unit Number (#)

Definition:
Count of habitat units of similar types, used to determine location of paired sample units

How to estimate:
When counting habitat units, group pools and glides (slow water) together, and group riffles, runs, and cascades (fast water) together. For example, consider the following sequence of habitat units:

Habitat units in this sequence would be counted in the following manner (similar types are shaded same color):

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>Unit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>2</td>
</tr>
<tr>
<td>P</td>
<td>3</td>
</tr>
<tr>
<td>R</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>R</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
</tr>
<tr>
<td>R</td>
<td>5</td>
</tr>
<tr>
<td>R</td>
<td>5</td>
</tr>
<tr>
<td>RN</td>
<td>6</td>
</tr>
<tr>
<td>P</td>
<td>6</td>
</tr>
<tr>
<td>R</td>
<td>7</td>
</tr>
</tbody>
</table>

In the above example, the crew has counted six slow water (pool/glide) units and seven fast water (riffle/run/cascade) units.

If ‘3’ were chosen as the random number and the measuring interval was every 10th unit, the crew would estimate and then measure habitat data for Pool 3 and Cascade 3 (i.e. Pool 3 and Cascade 3 are ‘paired sample’ units). When the crew reaches pool or glide 13 and riffle, run, or cascade 13, they would repeat procedures followed in the 3rd units.

When to record: every habitat unit; not recorded for features such as falls, tributaries, side channels, culverts, etc.
Distance (m)

Definition:
Number of meters from the start of the inventory to the upstream end of the habitat unit or distance from the start of the inventory to upstream end of a feature, used as spatial reference for data analysis and to locate features in the future.

How to estimate:
The observer walks upstream in the middle of the stream channel with a hipchain measuring device. When they reach the upstream break between habitat units or the upstream end of a feature they stop and report the distance to the recorder.

Care should be taken to keep the hipchain string in the middle of the stream, especially around bends and meanders. If the hipchain should break, retreat to the location where the break occurred, tie off the hipchain, and continue. If the hipchain is reset for any reason be sure to note it in the comments.

When to record: every habitat unit and feature

Estimated Width (m)

Definition:
Average wetted width of the habitat unit as estimated visually, used to calculate stream area. Wetted width is the distance from the edge of the water on one side of the main channel to the edge of the water on the opposite side of the main channel.

How to estimate:
The observer notes the general shape and width of the unit while walking to the upstream end. When they reach the upstream end of the unit the observer stops, turns to face the unit, and estimates the average wetted width. Measure the wetted width of the stream before starting each day to calibrate yourself.

When to record: every habitat unit
Maximum and Average Depth (cm)

Definitions:
- Maximum Depth – vertical distance from substrate to water surface at deepest point in habitat unit
- Average Depth – average vertical distance from substrate to water surface in habitat unit

How to estimate:
The observer uses a wading rod marked in 5 cm increments to measure water depth as they walk upstream through the habitat unit. Water depth in deepest spot is recorded as the maximum depth. Average depth is the average of several depth measurements taken throughout the habitat unit.

When to record: every habitat unit

Riffle Crest Depth (cm)

Definition:
Vertical distance from the substrate to the water surface at the deepest point in the riffle crest. The riffle crest is the shallowest continuous line (usually not straight) across the channel where the water surface becomes continuously riffled in the transition area between a riffle (or a run or cascade) and a pool (or glide) (Armantrout 1998); think of it as the last place water would flow out of the pool if the riffle ran dry.

How to estimate:
When the observer reaches the upstream end of a riffle (or a run or cascade) leading into a pool (or glide), they use the wading rod to measure the deepest point in the riffle crest. Record the depth in the RCD column for the riffle habitat row.

When to record: at the upstream end of any riffle, run, or cascade leading into a pool or glide
Dominant and Subdominant Substrate (1-9)

Definitions:
Dominant Substrate: size class of stream bed material that covers the greatest amount of surface area within the wetted channel of the habitat unit
Subdominant Substrate: size class of stream bed material that covers the 2nd greatest amount of surface area within the wetted channel of the habitat unit

How to estimate:
The following size classes are used to categorize substrates*. The substrate ‘Number’ is entered into the dominant and subdominant substrate columns on the datasheet.

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Size (mm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Matter</td>
<td>1</td>
<td></td>
<td>dead leaves, detritus, etc. – not live plants</td>
</tr>
<tr>
<td>Clay</td>
<td>2</td>
<td></td>
<td>sticky, holds form when rolled into a ball</td>
</tr>
<tr>
<td>Silt</td>
<td>3</td>
<td></td>
<td>slippery, does not hold form when rolled into a ball</td>
</tr>
<tr>
<td>Sand</td>
<td>4</td>
<td>silt – 2</td>
<td>grainy, does not hold form when rolled into ball</td>
</tr>
<tr>
<td>Small Gravel</td>
<td>5</td>
<td>3-16</td>
<td>sand to thumbnail</td>
</tr>
<tr>
<td>Large Gravel</td>
<td>6</td>
<td>17-64</td>
<td>thumbnail to fist</td>
</tr>
<tr>
<td>Cobble</td>
<td>7</td>
<td>65-256</td>
<td>fist to head</td>
</tr>
<tr>
<td>Boulder</td>
<td>8</td>
<td>>256</td>
<td>larger than head</td>
</tr>
<tr>
<td>Bedrock</td>
<td>9</td>
<td></td>
<td>solid rock, parent material, may extend into bank</td>
</tr>
</tbody>
</table>

* these size classes are based on the modified Wentworth scale

As the observer walks through the unit they scan the substrate. When they reach the upstream end of the unit they stop, turn to face the unit, and determine the dominant and subdominant substrate classes.

Estimate substrate size along the intermediate axis (b-axis). The b-axis is not the longest or shortest axis, but the intermediate length axis (see below). It is the axis that determines what size sieve the particle could pass through. Remember that your eyes are naturally drawn to larger size substrates. Be careful not to bias your estimate by focusing on the large size substrate.

Some units will contain a mixture of particle sizes. Consult with the recorder and use your best professional judgment to choose the dominant and subdominant sizes.

In units where the substrate is covered in moss, algae, or macrophytes classify the underlying substrate and make note of the plant growth in the comments. Only call organic substrate where there is dead and down leaves or other detritus covering the bottom of the unit.

When to record: every habitat unit

![Diagram of substrate size classes with A-axis (longest), B-axis (intermediate), and C-axis (shortest)]
Rosgen Channel Type (A-G)

Definitions:
Stream channel classification system described in Rosgen (1996) based on entrenchment, width/depth ratio, sinuosity, and percent slope

How to Measure:
Before the crew begins the inventory they should make the measurements described below to determine the channel type. Channel types are based on the following channel characteristics:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrenchment</td>
<td>< 1.4</td>
<td>1.4 – 2.2</td>
<td>> 2.2</td>
<td>n/a</td>
<td>> 2.2</td>
<td>< 1.4</td>
<td>< 1.4</td>
</tr>
<tr>
<td>W/D Ratio</td>
<td>< 12</td>
<td>> 12</td>
<td>> 12</td>
<td>> 40</td>
<td>< 12</td>
<td>> 12</td>
<td>< 12</td>
</tr>
<tr>
<td>Sinuosity</td>
<td>1 – 1.2</td>
<td>> 1.2</td>
<td>> 1.2</td>
<td>n/a</td>
<td>> 1.5</td>
<td>> 1.2</td>
<td>> 1.2</td>
</tr>
<tr>
<td>Slope (%)</td>
<td>4 – 9.9</td>
<td>2 – 3.9</td>
<td>< 2</td>
<td>< 4</td>
<td>< 2</td>
<td>< 2</td>
<td>2 – 3.9</td>
</tr>
</tbody>
</table>

Although we record channel type for every unit, it was designed to describe a reach of stream. Our main objective here is to locate changes between channel types, which could either be abrupt (such as change from a B to a G near a road crossing) or less obvious transitional areas (such as a natural transition from a B to an A channel as you move upstream). If you think channel type may have changed take the time to make the calculations listed below to determine the channel type for the reach you are entering.

Full channel type descriptions and how to measure each of the channel characteristics in the table above can be found in Rosgen (1998). Never perform measurements in a pool, always attempt to find a run or deep riffle with well-defined bankfull indicators to perform measurements. A summary of each is listed below:

Entrenchment (page 31 & 32 in Rosgen field guide):
- locate suitable riffle or run area for bankfull measurement (page 24-25 in Rosgen field guide)
- measure the bankfull width the maximum bankfull depth
- stretch a tape across the channel at 2x the maximum bankfull depth (this is the flood prone area)
- divide the flood prone area width by the bankfull width to determine entrenchment ratio

Width to Depth Ratio (page 32 in Rosgen field guide):
- locate suitable riffle or run area for bankfull measurement (page 24-25 in Rosgen field guide)
- measure the bankfull width and the maximum bankfull depth
- divide bankfull width by depth to determine width to depth ratio

Sinuosity (need aerial photo to determine)

Slope (page 37 in Rosgen field guide):
- Measure riffle to riffle gradient using clinometer

When to measure: every paired fastwater habitat unit*
* record for every fastwater paired unit, but remember this is describing a reach characteristic – see above

Percent Fines (%)

Definition:
Percent of the total surface area of the stream bed in the wetted area of the habitat unit that consists of sand, silt, or clay substrate particles (i.e. particles < 2 mm diameter).

How to estimate:
As the observer walks through the habitat unit they note the amount of sand, silt, and clay in the habitat unit. When they reach the upstream end of the unit, they stop, turn to face the unit and estimate the amount of the total surface area within the wetted channel that consists of sand, silt, or clay.

Where to estimate: every habitat unit

Large Wood (1-4 and rootwad)

Definition:
Count of dead and down wood within the bankfull channel of a habitat unit

How to estimate:
The recorder classifies and counts LW as they walk through the habitat unit. LW counts are grouped by the size classes listed below:

<table>
<thead>
<tr>
<th>Category</th>
<th>Length (m)</th>
<th>Diameter (cm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-5</td>
<td>10-55</td>
<td>short, skinny</td>
</tr>
<tr>
<td>2</td>
<td>1-5</td>
<td>>55</td>
<td>short, fat</td>
</tr>
<tr>
<td>3</td>
<td>>5</td>
<td>10-55</td>
<td>long, skinny</td>
</tr>
<tr>
<td>4</td>
<td>>5</td>
<td>>55</td>
<td>long, fat</td>
</tr>
<tr>
<td>RW</td>
<td>rootwad</td>
<td>rootwad</td>
<td>roots on dead and down tree</td>
</tr>
</tbody>
</table>

Only count woody debris that is:
- > 1.0 m in length and > 10.0 cm in diameter
- within the bankfull channel
- fallen, not standing dead

- Count rootwads separately from attached pieces of LW
- Estimate the diameter of LW at the widest end of the piece
- A piece that is forked, but is still joined counts as only one piece of LW
- Only count each piece one time, do not count a piece that is in two habitat units twice
- Enter the total count for each size category into the appropriate column on the datasheet

Where to estimate: every habitat unit
Actual Width (m)

Definition:
Average wetted width of the habitat unit as measured with 50 m tape, used to calculate stream area. Wetted width is the distance from the edge of the water on one side of the main channel to the edge of the water on the opposite side of the main channel.

How to measure:
Use a meter tape to measure the wetted width of the stream in at least three locations. Average the measurements to obtain the average wetted width.

Where to measure:
paired sample habitat units

Photo #

Definition:
Photograph of habitat unit or crossing feature.

How to measure:
Take photo facing upstream with observer holding wading rod in picture. Be sure to get entire width (and length if possible) of habitat unit or crossing feature in the photo. Record photo number shown on digital camera.

Where to measure:
paired sample riffles, runs, or cascades and any crossing features encountered
Features

Definition: points on a stream that could potentially serve as landmarks, may be natural or manmade

How to measure: record the distance to the upstream end of a feature; record distance of all features (both stream and crossing features) in the regular habitat datasheet; also record additional measurements for crossing features in the crossing datasheet and take a photograph of all crossing features

Where to record: wherever found

<table>
<thead>
<tr>
<th>Channel Feature</th>
<th>Abbreviation</th>
<th>What to Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterfall¹</td>
<td>FALL</td>
<td>Distance, estimated height</td>
</tr>
<tr>
<td>Tributary</td>
<td>TRIB</td>
<td>Distance, average wetted width, into main channel on left or right (as facing upstream)</td>
</tr>
<tr>
<td>Side channel²</td>
<td>SCH</td>
<td>Distance, average wetted width, whether it is flowing into or out of main channel on left or right (as facing upstream)</td>
</tr>
<tr>
<td>Braid³</td>
<td>BRD</td>
<td>Distance at start and distance at end; continue with normal inventory up channel with greatest discharge</td>
</tr>
<tr>
<td>Seep (Spring)</td>
<td>SEEP</td>
<td>Distance, left or right bank (as facing upstream), size, coloration</td>
</tr>
<tr>
<td>Landslide</td>
<td>SLID</td>
<td>Distance, left or right bank (as facing upstream), estimated size</td>
</tr>
<tr>
<td>Other</td>
<td>OTR</td>
<td>Distance, description of feature, example: found water intake pipe going to house here; old burned out shack on side of stream; Big Gap campground on left; alligator slide here, etc.</td>
</tr>
</tbody>
</table>

¹ must be vertical with water falling through air to be a waterfall and not a cascade, do not record unless >1m high
² two channels, continue with normal inventory up channel with most volume
³ three or more channels intertwined, continue with normal inventory up channel with most volume

<table>
<thead>
<tr>
<th>Crossing Feature</th>
<th>Abbreviation</th>
<th>What to Record*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>BRG</td>
<td>Distance, width, height, road or trail name and type (gravel, paved, dirt, horse, ATV, etc.), photo</td>
</tr>
<tr>
<td>Ford</td>
<td>FORD</td>
<td>Distance, road or trail name and type (gravel, paved, dirt, etc.), photo</td>
</tr>
<tr>
<td>Dam</td>
<td>DAM</td>
<td>Distance, type, condition, estimated height, dam use, name of road or trail, if applicable; include beaver dams, photo</td>
</tr>
<tr>
<td>Culvert</td>
<td>V</td>
<td>Distance, road or trail name, type, # of outlets, diameter/width, height, material, perch (distance from top of water to bottom lip of culvert, natural substrate (present or absent through length), photo</td>
</tr>
</tbody>
</table>

* photograph all crossing features with person and wading rod for scale, record ‘Y’ in ‘Photo’ column

We cannot stress enough the importance of fully and accurately describing features. This means getting out a quadrangle map and finding road, trail, and tributary names and recording them in ‘Comments’ and taking the time to describe the location of features in relation to landmarks found on quadrangle maps.

Take photos of all crossing features!
Section 3: Wrapping Up

End the inventory where:
- Forest Service property ends
- Stream is dry for more than 1000 m
- Stream channel is < 1.0 m wide for more than 500 m

Record the following in the Comments:
- Time and date
- Reason for ending the inventory
- Detailed written description of location using landmarks for reference
** be sure the header information is completed – GPS, etc.**

When you return to home base:
- Immediately download the data and check file to be sure all data downloaded
- Check header information to be sure it is complete
- Note in all files if more than one file was used during the inventory
- Save to the computer and create a backup copy
- Document any photographs
- If using paper, make a photocopy of the data and store in secure location
- Record on master list that inventory is complete, with data and names of crew members

Section 4: Summary

Before starting, determine interval, select random number, fill in header information

Record for every habitat unit:
- NHD_ID
- Unit Type
- Unit Number
- Distance
- Estimated Width
- Maximum Depth
- Average Depth
- Dominant Substrate
- Subdominant Substrate
- Percent Fines
- Large Wood

Record for every riffle, run, or cascade leading into a pool or glide:
- Riffle Crest Depth

Record for every paired sample pool and riffle:
- Measured Width

Record features and full feature descriptions wherever they are encountered. Photograph all crossings!

When end of inventory is reached, record reason for ending, date, time, and GPS coordinates.
Appendix: Field Guide, Random Numbers Table, Equipment Checklist
Record for every habitat unit:
- **NHD_ID**: NHD stream reach number from provided maps
- **Unit Type**: pool, riffle, run, cascade, glide, feature (see below)
- **Unit Number**: group pools & glides; group riffles, runs, cascades
- **Distance**: (m) at upstream end of unit
- **Estimated Width**: (m) visual estimate of average wetted width
- **Maximum Depth**: (cm) deepest spot in unit
- **Average Depth**: (cm) average depth of unit
- **Dominant Substrate**: (1-9) covers greatest amount of surface area in unit
- **Subdominant Substrate**: (1-9) covers 2nd most surface area in unit
- **Percent Fines**: (%) percent of bottom consisting of sand, silt, or clay
- **Large Wood**: (1-4, RW) count of dead and down wood in the bankfull channel

Record for every riffle, run, or cascade leading into a pool or glide:
- **Riffle Crest Depth**: (cm) deepest spot in hydraulic control between riffle type habitat and pool type habitat

Record for paired sample pools:
- **Measured Width**: (m) measurement of average wetted width

Record for paired sample riffles:
- **Measured Width**: (m) measurement of average wetted width
- **Channel Width**: (m) measurement of bankfull channel width
- **Riparian Width**: (L&R) (m) measurement of floodplain
- **Photo #**: picture of habitat unit or crossing feature

Unit Types
- **Riffle (R)** fast water, turbulent, gradient <12%; includes rapids, chutes, and sheets if gradient <12%
- **Cascade (C)** fast water, turbulent, gradient ≥12%, includes sheets and chutes if gradient ≥12%
- **Run (RN)** fast water, little to no turbulence, gradient <12%, flat bottom profile, deeper than riffles
- **Pool (P)** slow water, may or may not be turbulent, gradient <1%, includes dammed, scour, and plunge pools
- **Glide (G)** slow water, no surface turbulence, gradient <1%, shallow with little flow and flat bottom profile
- **Underground (UNGR)** distance at upstream end, why dry

Features
- **Waterfall (FALL)** distance, height
- **Tributary (TRIB)** distance, width, in on L or R
- **Side Channel (SCH)** distance, width, in or out on L or R
- **Braid (BRD)** distance at downstream and upstream ends
- **Seep or Spring (SEEP)** distance, on left or right, amount of flow
- **Landslide (SLID)** distance, L or R, est. size and cause
- **Other (OTR)** record distance, describe feature in comments

Crossing Features: Photograph and record the following:
- **Bridge (BRG)** distance, height, width, road or trail name & type
- **Dam (DAM)** distance, type, est. height, road or trail name & type
- **Ford (FORD)** distance, road or trail name & type
- **Culvert (V)** distance, type (pipe, box, open box, arch, open arch), size, material, natural substrate, perch (top of water to culvert) road or trail name

Substrates
1. **Organic Matter**, dead leaves detritus, etc., not living plants
2. **Clay**, sticky, holds form when balled
3. **Silt**, slick, does not hold form when balled
4. **Sand**, >silt-2mm, gritty, doesn’t hold form
5. **Small Gravel**, 3-16mm, sand to thumbnail
6. **Large Gravel**, 17-64mm, thumbnail to fist
7. **Cobble**, 65-256mm, fist to head
8. **Boulder**, >256, > head
9. **Bedrock**, solid parent material

Large Wood
1. <5m long, 10-55cm diameter
2. <5m long, >55cm diameter
3. >5m long, 10-55cm diameter
4. >5m long, >55cm diameter

RW: rootwad – count separately from attached LW, record in comments
do not record woody debris <10cm diameter, <1m length

End inventory
Where stream is less than 1.0 m wide for > 500 m, or channel runs dry for > 1.0 km, or where boundary is reached. Comment on why inventory was ended. Record time of day, detailed description of location, and GPS coordinates at endpoint, and be sure all header info is filled in on datasheets.
Random numbers for measuring every 5th unit

<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
<th>5</th>
<th>1</th>
<th>5</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Random numbers for measuring every 10th unit

<table>
<thead>
<tr>
<th>3</th>
<th>7</th>
<th>10</th>
<th>5</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>7</th>
<th>10</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Choose a new random number at the beginning of each stream inventory
Use the number for the entire stream
Use the first table for streams < 1.0 km long, the second table for streams >1.0 km long
Equipment Checklist

- **hipchain**
- extra string for hipchain
- wading rod
- 50 m tape measure
- datalogger
- backup battery for datalogger
- GPS unit
- camera
- backpack
- pencils
- flagging
- markers
- waterproof backup datasheets
- BVET manual
- topographic maps
- NHD_ID maps
- water
- water filter
- lunch
- first aid kit
- radio/cell phone
- toilet paper
- felt bottom wading boots
- raingear

Remember the following for the start of each new stream or reach:

- Determine measuring interval
- Select a random number
- Fill in header information completely
Rosgen Measurements

All measurements should be made across a transect in an area of uniform flow, specifically riffle or run sections with few irregularities in cross-sectional shape. Avoid areas influenced by culverts, bridges, tributaries, side-channels, etc.

- What is the entrenchment ratio?
 - Entrenchment ratio = flood prone width / bankfull width
 - Floodprone width = width at two-times maximum bankfull depth

- What is the width/depth ratio?
 - Width/depth ratio = bankfull width / average bankfull depth
 - Be sure to use same units of measure (centimeters) for width and depth
 - Measure bankfull depth (not water depth) at several locations across transect to obtain average bankfull depth

- What is the gradient?
 - Measure riffle to riffle slope (%) with clinometer
Rosgen Worksheet

A. Bankfull Channel Width (m) _____

B. Maximum Bankfull Depth (cm) _____ *2 = _____

C. Average Bankfull Depth (cm) _____

D. Right Riparian Width (m) _____

E. Left Riparian Width (m) _____

F. Gradient (%) _____

Entrenchment Ratio = (A+D+E)/A

(_____ + _____ + _____) / _____ = _____

Width Depth Ratio = (100*A)/C

(100* _____) / _____ = _____

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrench. ratio</td>
<td>< 1.4</td>
<td>1.4 – 2.2</td>
<td>> 2.2</td>
<td>n/a</td>
<td>> 2.2</td>
<td>< 1.4</td>
<td>< 1.4</td>
</tr>
<tr>
<td>W/D ratio</td>
<td>< 12</td>
<td>> 12</td>
<td>> 12</td>
<td>> 40</td>
<td>< 12</td>
<td>> 12</td>
<td>> 12</td>
</tr>
<tr>
<td>Gradient (%)</td>
<td>4 – 9.9</td>
<td>2 – 3.9</td>
<td>< 2</td>
<td>< 4</td>
<td>< 2</td>
<td>< 2</td>
<td>2 – 3.9</td>
</tr>
</tbody>
</table>

*these are the dominant ranges, values may be slightly outside these ranges