Index of Biotic Integrity for Horse Lick Creek; London District, Daniel Boone National Forest, 2016

United States Department of Agriculture Forest Service
Southern Research Station
Center for Aquatic Technology Transfer
1710 Research Center Drive
Blacksburg, VA 24060-6349

C. Andrew Dolloff, Team Leader

Report prepared by:
Colin Krause¹, Craig Roghair¹, Wendell Haag², Jon Walker³, and Pamela Martin³
December 2017

¹USDA Forest Service
Southern Research Station
Center for Aquatic Technology Transfer
1710 Research Center Dr.
Blacksburg, VA 24060

²USDA Forest Service
Southern Research Station
3761 Georgetown Road
Frankfort KY 40601

³USDA Forest Service
Daniel Boone National Forest
1700 Bypass Road
Winchester KY 40391
Table of Contents

Introduction ... 2
Methods ... 2
 Site Selections and Layout ... 2
 Fish Sampling and KIBI Scoring .. 3
 Macroinvertebrate Sampling and MBI Scoring .. 3
 Stream Habitat ... 4
 Pebble Counts ... 4
Results ... 4
 Fish Sampling and KIBI .. 4
 Macroinvertebrate Sampling and MBI ... 4
 Stream Habitat ... 5
 Pebble Count Inventory ... 5
Discussion .. 5
Data Availability ... 5
Literature Cited .. 6
Appendix A: Field Methods for Stream Inventory .. 23
Appendix B: Field Methods for Habitat Inventory ... 28
Appendix C: Field Methods for Macroinvertebrate Sampling 56
Appendix D: Field Methods for Riffle Stability Index .. 60

List of Figures

Figure 1. Sample site locations ... 7
Figure 2. Kentucky index of biotic integrity and macroinvertebrate bioassessment index rating results .. 8
Figure 3. Kentucky index of biotic integrity rating results at sample site locations 9
Figure 4. Macroinvertebrate bioassessment index rating results at sample site locations 10
Figure 5. Riffle Stability Index rating results at sample site locations 11

List of Tables

Table 1. Data collected at sites on the London District .. 12
Table 2. River miles from confluence and GPS coordinates 13
Table 3. Total count of fish captured at each sample site .. 14
Table 4. Kentucky index of biotic integrity and macroinvertebrate bioassessment index criteria ... 15
Table 5. Kentucky index of biotic integrity results .. 16
Table 6. Kentucky macroinvertebrate bioassessment index results 17
Table 7. Summary of BVET stream habitat attributes .. 18
Table 8. Stream habitat unit counts and area in pools and riffles 19
Table 9. Dominant and subdominant substrate types observed in pools and riffles 20
Table 10. Large wood per kilometer .. 21
Table 11. Riffle stability index results .. 22
Introduction

Horse Lick Creek, much of which flows through lands managed by the Daniel Boone National Forest (DBNF), once supported a robust and globally important freshwater mussel assemblage. Mussel population monitoring from the 1980’s through the early 2000’s documented alarming declines in mussel populations throughout the stream (Haag and Warren 2004). Declines in the 1980’s were initially attributed to a large increase in mining activity in the watershed (Layzer and Anderson 1992), but cessation of mining activity in the early 1990’s did not result in a reversal of fortune for mussel populations, which continued their decline. Today, despite decades of conservation and restoration activities in the watershed, most of the mussel species that occupied the creek now appear to be gone (Wendell Haag, pers. comm.).

Horse Lick Creek’s high quality instream habitat and diverse fish community make it a candidate for mussel restoration projects, if factors responsible for continuing mussel decline can be identified and remediated. Beginning in 2015, Dr. Wendell Haag (U.S. Forest Service, Southern Research Station) employed juvenile mussels as biomonitors in streams throughout Kentucky to identify factors leading to mussel declines. Preliminary results showed that in streams with declining mussel populations (including in Horse Lick Creek), juvenile mussels grew at slower rates than in streams with healthy mussel populations, prompting an intensification of mussel biomonitoring efforts in Horse Lick Creek. In 2016, juvenile mussels were placed at 12 locations spread throughout Horse Lick Creek with a goal of identifying sources of mussel decline within the watershed.

To further inform the mussel study results DBNF partnered with the Forest Service Southern Research Station Center for Aquatic Technology Transfer (CATT) to complete fish sampling for the Kentucky index of biotic integrity (KIBI), macroinvertebrate sampling for the Kentucky macroinvertebrate bioassessment index (MBI), and stream habitat sampling. The CATT deployed a team of 6 technicians from July 13-20th, 2016 to complete sampling with the same approaches used in the Daniel Boone National Forest stream monitoring program.

Methods

Site Selections and Layout

We completed fish, macroinvertebrate, and stream habitat inventories at 11 sites in Horse Lick Creek and 1 site in tributary, Clover Bottom Creek (Figure 1, Tables 1 and 2). The sites were selected to correspond with juvenile mussel monitoring locations spread throughout the length of Horse Lick Creek. At each sample site, we measured the wetted width of 1 – 2 fast-water (riffle or run) habitat units and calculated the average wetted width. If the average wetted width was less than or equal to 3.0 m or
greater than or equal to 7.5 m, the sample length was 120 m or 300 m, respectively. In all other cases, sample length was 40-times the average wetted width (see Appendix A for detailed site layout methods).

Fish Sampling and KIBI Scoring

A six-person team used a DC backpack electrofisher to collect fish using fish sampling methods established for Forest-wide stream monitoring on DBNF (Appendix A). Due to the equipment used, backpack electrofishing could only be conducted at sites having predominantly wadable water depths (typically ≤1 m). The fish collection data (species and counts) were provided to DBNF (Jon Walker, Forest Hydrologist and Pamela Martin, Forest Fisheries Biologist) for calculation of KIBI scores.

The KIBI scores sample sites and rates their biotic integrity as Excellent (≥71), Good (59-70), Fair (39-58), Poor (19-38), or Very-Poor (0-18) (Compton et al. 2003). The classification thresholds were established using reference scores, where scores >50th percentile were classified as having Excellent biotic integrity; 5th-50th percentile were Good, and the 5th percentile was trisected to have equal intervals representing Fair, Poor, and Very-Poor biotic condition (Compton et al. 2003). The DBNF followed the recommended guideline in Compton et al. (2003), where any KIBI score that falls close (± 2 points) to the classification threshold is to contain both categories (i.e. Fair/Good).

Macroinvertebrate Sampling and MBI Scoring

A four-person team used riffle and multi-habitat sampling methods developed by the Kentucky Division of Water (KDOW 2011) for standardized collection of aquatic macroinvertebrates (see Appendix A and Appendix C for detailed sampling methods). Macroinvertebrate sampling was successfully conducted in water depths deeper than for electrofishing because there is no electrical equipment being used. If no riffle habitat was present within the sample length at a site, the riffle samples were performed in the nearest riffle habitat available up and/or downstream. The macroinvertebrate sampling team turned over all samples to the DBNF (Jon Walker, Forest Hydrologist). The DBNF contracted a professional entomologist to identify and count the macroinvertebrates, and then used the results to calculate MBI scores.

The MBI scores the sample sites and rates their biotic integrity as either Excellent (≥82), Good (75-81), Fair (50-74), Poor (25-49), or Very-Poor (0-24) (Pond et al. 2003). When an MBI score fell close (± 2 points) to the classification threshold, DBNF rated the site using both categories (e.g. Fair/Good).
Stream Habitat

A two-person team sampled stream habitat using habitat sampling methods established for Forest-wide stream monitoring on DBNF (see Appendix A and Appendix B for detailed methods). During data analysis the following attributes were averaged for each sample site: maximum depth, average depth, pool residual depth, wetted width, bankfull channel width, percent fines, gradient, and water temperature.

Pebble Counts

A six-person team completed pebble counts on riffle stream-bed substrates and on depositional-bar features using sampling methods established for Forest-wide stream monitoring on DBNF (see Appendix A and Appendix D for detailed methods). If no riffle habitat was present within the sample length at a site, then pebble counts were performed in the nearest riffle habitat available up and/or downstream. Pebble count data were used to calculate Riffle Stability Index (RSI), relative bed stability, and median particle sizes for the stream bed (Kappesser 2002). The RSI, which compares the largest mobile particles in the channel with the cumulative particle size distribution, can be used to evaluate channel condition (i.e. the level of excess sediment loading in riffles) and indicate upstream watershed condition (Kappesser 2002). Kappasser (2002) developed a RSI condition rating (developed using Rosgen B and Fb channels in Virginia) where RSI values <70 are indicative of watersheds in good condition and riffles are bedrock or scoured, RSI 70-85 indicates watersheds in fair condition and riffles are somewhat loaded with sediment, and RSI >85 indicates watersheds in poor condition and riffles are loading increasingly with excess sediment.

Results

Fish Sampling and KIBI

We collected a total of 29 fish species among all sample sites (Table 3). We were able to sample the entire length of 7 of the 12 sample sites (Table 1). Deep water prevented us from sampling the entirety of sites 4 and 5 and portions of sites 6, 7, and 8. Of the partially sampled sites we determined that only site 8 was inadequately sampled for KIBI scoring, excluding a total of 3 sites (Sites 4, 5, and 8) from receiving a KIBI rating. The KIBI rated 3 sites as Fair, 1 site as Fair/Good, and 5 sites as Good (Tables 4 and 5, Figures 2 and 3).

Macroinvertebrate Sampling and MBI

We collected a complete macroinvertebrate sample at or near all 12 sample sites. The MBI rated all 12 sites as Fair (Tables 4 and 6, Figures 2 and 4).
Stream Habitat

Sample sites were generally low gradient (1 – 2%) with bankfull widths ranging from 11 – 23 m (Table 7). Habitat was dominated by slow water types (pools, glides), with riffles occupying more than 30% of the surface area in only 3 of the 12 sites (Table 8). Average pool depths varied by site, ranging from 45 cm to over 100 cm (Table 7). Coarse substrates (gravel, cobbles) were more common than fine substrates, though sand was identified as the dominant substrate in a small number of habitat units (Table 9). Nearly all large wood was in the smaller diameter size classes (LW1, LW3) (Table 10). Long, large diameter pieces (LW4) were encountered at only 1 site, and in low quantities (Table 10). Root wads provided added habitat complexity at half of the sites (Table 10).

Pebble Count Inventory

The RSI values ranged from 63.3 to 95.3 among the 12 sites (Table 11). The RSI rated 6 sites as Poor, 2 sites as Fair, and 4 sites as Good (Table 11, Figure 5). The D50 for particle size fell within the range of large gravel to cobble for all sites (Table 11).

Discussion

Horse Lick Creek was identified as a potential candidate for mussel reintroductions because of its high quality habitat and diverse fish community. The KIBI, MBI, and RSI scores we obtained were lower, on average, than anticipated for a stream identified as having high quality habitat and a diverse fish community. Several of our sample sites contained a large proportion of deep pool habitat which may have impacted fish sampling efficiency and thus KIBI ratings. However, we were able to adequately sample for macroinvertebrates and sites were consistently rated by the MBI as Fair. There was no consistent longitudinal pattern to the results suggesting that factors impacting the biological communities in Horse Lick Creek are either introduced upstream of our sample reach, or are impacting the watershed as a whole. Pairing our results with those of the ongoing juvenile mussel biomonitoring will provide additional insights to the causes and scale of impacts to the biological communities of Horse Lick Creek.

Data Availability

Horse Lick Creek data collected in summer 2016 reside in a MS Access database, which is managed by the CATT, and a copy has been provided to Jon Walker, DBNF Forest Hydrologist. We will work with DBNF to develop custom queries and reports for the MS Access database, as needed.
Literature Cited

Figure 1. Sample site locations (#1-11 Horse Lick Creek; #12 Clover Bottom Creek), London District, Daniel Boone National Forest, Kentucky.
Figure 2. Kentucky index of biotic integrity (KIBI) and macroinvertebrate bioassessment index (MBI) rating results for Horse Lick Creek and Clover Bottom Creek sample sites on the London District, July 2016 (Horse Lick Creek sites 4, 5, and 8 had either no fish sample or were inadequately sampled due to water depth too deep for electrofishing).
Figure 3. Kentucky index of biotic integrity (KIBI) rating results at sample site locations (#1-11 Horse Lick Creek; #12 Clover Bottom Creek), London District, Daniel Boone National Forest, Kentucky (Horse Lick Creek sites 4, 5, and 8 had either no fish sample or were inadequately sampled due to water depth too deep for electrofishing).
Figure 4. Macroinvertebrate bioassessment index (MBI) rating results at sample site locations (#1-11 Horse Lick Creek; #12 Clover Bottom Creek), London District, Daniel Boone National Forest, Kentucky.
Figure 5. Riffle Stability Index (RSI) rating results at sample site locations (#1-11 Horse Lick Creek; #12 Clover Bottom Creek), London District, Daniel Boone National Forest, Kentucky.
Table 1. Data collected at sites on the London District. Data were collected in July (macroinvertebrates, BVET, and Efish) 2016.

<table>
<thead>
<tr>
<th>Site #</th>
<th>EDAS #</th>
<th>Stream Name</th>
<th>Quad</th>
<th>Macroinverts</th>
<th>BVET habitat (m)</th>
<th>Efish (sec)</th>
<th>Efish (m)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DBF02023702</td>
<td>Horse Lick Creek</td>
<td>Livingston</td>
<td>collected</td>
<td>394</td>
<td>4,568</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DBF02023703</td>
<td>Horse Lick Creek</td>
<td>Livingston</td>
<td>collected</td>
<td>397</td>
<td>3,617</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DBF02023704</td>
<td>Horse Lick Creek</td>
<td>Livingston</td>
<td>collected</td>
<td>330</td>
<td>3,650</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DBF02023705</td>
<td>Horse Lick Creek</td>
<td>Livingston</td>
<td>collected</td>
<td>290</td>
<td>0</td>
<td>0</td>
<td>no efishing; entire reach too deep</td>
</tr>
<tr>
<td>5</td>
<td>DBF02023706</td>
<td>Horse Lick Creek</td>
<td>Livingston</td>
<td>collected</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>no efishing; entire reach too deep</td>
</tr>
<tr>
<td>6</td>
<td>DBF02023707</td>
<td>Horse Lick Creek</td>
<td>Livingston</td>
<td>collected</td>
<td>300</td>
<td>1,650</td>
<td>110</td>
<td>efished 110 of 300 m; 1st glide & last pool too deep</td>
</tr>
<tr>
<td>7</td>
<td>DBF02023708</td>
<td>Horse Lick Creek</td>
<td>Parrot</td>
<td>collected</td>
<td>345</td>
<td>3,294</td>
<td>260</td>
<td>efished 260 of 300 m; first pool too deep</td>
</tr>
<tr>
<td>8</td>
<td>DBF02023709</td>
<td>Horse Lick Creek</td>
<td>Parrot</td>
<td>collected</td>
<td>315</td>
<td>678</td>
<td>60</td>
<td>efished 60 of 300 m; first glide too deep</td>
</tr>
<tr>
<td>9</td>
<td>DBF02023710</td>
<td>Horse Lick Creek</td>
<td>Parrot</td>
<td>collected</td>
<td>458</td>
<td>4,878</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DBF02023711</td>
<td>Horse Lick Creek</td>
<td>Johnetta</td>
<td>collected</td>
<td>316</td>
<td>3,540</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DBF02023712</td>
<td>Horse Lick Creek</td>
<td>Sandgap</td>
<td>collected</td>
<td>272</td>
<td>1,576</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DBF02023713</td>
<td>Clover Bottom Creek</td>
<td>Sandgap</td>
<td>collected</td>
<td>344</td>
<td>3,085</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. River miles from confluence (with Rockcastle River for Horse Lick Creek sites and with Horse Lick Creek for Clover Bottom site) and GPS coordinates recorded at the downstream (start) and upstream (end) extent of stream habitat and fish inventories on the London District, July 2016.

<table>
<thead>
<tr>
<th>Site #</th>
<th>Stream Name</th>
<th>River Mile from Confluence</th>
<th>Site Location Related to Tributary Confluences</th>
<th>GPS (UTM NAD83)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horse Lick Creek</td>
<td>0.3</td>
<td>downstream of White Oak Creek</td>
<td>16 S 753227 4134564 16 S 753049 4134857</td>
</tr>
<tr>
<td>2</td>
<td>Horse Lick Creek</td>
<td>1.4</td>
<td>upstream of White Oak Creek</td>
<td>16 S 753511 4135271 16 S 753782 4135465</td>
</tr>
<tr>
<td>3</td>
<td>Horse Lick Creek</td>
<td>4.5</td>
<td>downstream of Laurel Branch</td>
<td>16 S 753243 4137490 16 S 753061 4137729</td>
</tr>
<tr>
<td>4</td>
<td>Horse Lick Creek</td>
<td>4.6</td>
<td>in between Laurel and Trace Branch</td>
<td>16 S 753237 4137872 16 S 753484 4138004</td>
</tr>
<tr>
<td>5</td>
<td>Horse Lick Creek</td>
<td>4.8</td>
<td>in between Trace and Wolf Pen Branch</td>
<td>16 S 753551 4138029 16 S 754045 4138251</td>
</tr>
<tr>
<td>6</td>
<td>Horse Lick Creek</td>
<td>6.3</td>
<td>in between Wolf Pen Branch and Dry Fork</td>
<td>16 S 753736 4139293 16 S 753953 4139527</td>
</tr>
<tr>
<td>7</td>
<td>Horse Lick Creek</td>
<td>7.5</td>
<td>upstream of Dry Fork</td>
<td>16 S 755172 4139491 16 S 755430 4139696</td>
</tr>
<tr>
<td>8</td>
<td>Horse Lick Creek</td>
<td>7.9</td>
<td>downstream of Racoon Creek</td>
<td>16 S 755574 4139789 16 S 755701 4140016</td>
</tr>
<tr>
<td>9</td>
<td>Horse Lick Creek</td>
<td>8.0</td>
<td>upstream of Racoon Creek</td>
<td>16 S 755807 4140245 16 S 755571 4140603</td>
</tr>
<tr>
<td>10</td>
<td>Horse Lick Creek</td>
<td>12.4</td>
<td>downstream of Clover Bottom Creek</td>
<td>16 S 754360 4143874 16 S 754609 4144020</td>
</tr>
<tr>
<td>11</td>
<td>Horse Lick Creek</td>
<td>12.5</td>
<td>upstream of Clover Bottom Creek</td>
<td>16 S 754610 4144340 16 S 754394 4144330</td>
</tr>
<tr>
<td>12</td>
<td>Clover Bottom Creek</td>
<td>0.5</td>
<td>confluence in between Site 10 and 11</td>
<td>16 S 754718 4144208 16 S 754917 4144412</td>
</tr>
</tbody>
</table>
Table 3. Total count (adult & age-0) of fish captured at each sample site, London District, July 2016.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>1 Horse Lick Cr.</th>
<th>2 Horse Lick Cr.</th>
<th>3 Horse Lick Cr.</th>
<th>6 Horse Lick Cr.</th>
<th>7 Horse Lick Cr.</th>
<th>8 Horse Lick Cr.</th>
<th>9 Horse Lick Cr.</th>
<th>10 Horse Lick Cr.</th>
<th>11 Horse Lick Cr.</th>
<th>12 Clover Bm. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catostomidae</td>
<td></td>
</tr>
<tr>
<td>Catostomus commersoni</td>
<td>White Sucker</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypentelium nigricans</td>
<td>Northern Hog Sucker</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Moxostoma erythrurum</td>
<td>Golden Redhorse</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Centrarchidae</td>
<td></td>
</tr>
<tr>
<td>Ambloplites rupestris</td>
<td>Rock Bass</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>19</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lepomis cyanellus</td>
<td>Green Sunfish</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lepomis macrochirus</td>
<td>Bluegill</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Micropterus dolomieu</td>
<td>Smallmouth Bass</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cottidae</td>
<td></td>
</tr>
<tr>
<td>Cottus carolinae</td>
<td>Banded Sculpin</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>28</td>
<td>26</td>
<td>3</td>
<td>37</td>
</tr>
<tr>
<td>Cyprinidae</td>
<td></td>
</tr>
<tr>
<td>Campostoma oligolepis</td>
<td>Largescaler Stoneroller</td>
<td>8</td>
<td>15</td>
<td>19</td>
<td>9</td>
<td>21</td>
<td>0</td>
<td>61</td>
<td>2</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Chrosomus erythrogaster</td>
<td>S. Redbelly Dace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybopsis amblops</td>
<td>Bigeye Chub</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Luxilus chrysocephalus</td>
<td>Striped Shiner</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Lythrurus fasicolaris</td>
<td>Scarlet Shiner</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>12</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Notropis arionmus</td>
<td>Popeye Shiner</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Notropis micropteryx</td>
<td>Highland Shiner</td>
<td>8</td>
<td>2</td>
<td>40</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Notropis photogenis</td>
<td>Silver Shiner</td>
<td>33</td>
<td>15</td>
<td>40</td>
<td>20</td>
<td>49</td>
<td>8</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Notropis volucellus</td>
<td>Mimic Shiner</td>
<td>66</td>
<td>63</td>
<td>59</td>
<td>23</td>
<td>15</td>
<td>0</td>
<td>37</td>
<td>11</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Pinephales notatus</td>
<td>Bluntnose Minnow</td>
<td>53</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rhinichthys obtusus</td>
<td>W. Blacknose Dace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Semotilus atronaculatus</td>
<td>Creek Chub</td>
<td>1</td>
<td>1</td>
<td>40</td>
<td>11</td>
<td>18</td>
<td>2</td>
<td>29</td>
<td>58</td>
<td>26</td>
<td>72</td>
</tr>
<tr>
<td>Percidae</td>
<td></td>
</tr>
<tr>
<td>Etheostoma blennioides</td>
<td>Greenside Darter</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>19</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Etheostoma caeruleum</td>
<td>Rainbow Darter</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Etheostoma camurum</td>
<td>Bluebreast Darter</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Etheostoma flavellare</td>
<td>Fantail Darter</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Etheostoma gore</td>
<td>Cumberland Darter</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Etheostoma lawrencei</td>
<td>Headwater Darter</td>
<td>0</td>
<td>4</td>
<td>21</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>16</td>
<td>7</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Etheostoma maydeni</td>
<td>Redlips Darter</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Etheostoma virgatum</td>
<td>Striped Darter</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>13</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Percina caprodes</td>
<td>Loggerch</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Sites 6, 7, and 8 were not sampled completely due to deep water; 110 m, 260 m, and 60 m out of 300 m were electrofished at these sites, respectively.
Table 4. Kentucky index of biotic integrity (KIBI) and macroinvertebrate bioassessment index (MBI) sampling criteria. Some sites were not sampled within the KIBI and MBI recommended criteria for sampling month, site length, and electrofishing duration.

<table>
<thead>
<tr>
<th>Site #</th>
<th>Stream Name</th>
<th>Catchment Area (mi²)</th>
<th>KIBI¹</th>
<th>MBI²</th>
<th>Sampling Month³</th>
<th>Electrofishing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Headwater/Wadeable</td>
<td>KIBI</td>
<td>MBI</td>
<td>Reach Length⁴ (m)</td>
</tr>
<tr>
<td>1</td>
<td>Horse Lick Creek</td>
<td>61.6</td>
<td>Wadeable</td>
<td>July</td>
<td>July</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>Horse Lick Creek</td>
<td>56.4</td>
<td>Wadeable</td>
<td>July</td>
<td>July</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>Horse Lick Creek</td>
<td>54.3</td>
<td>Wadeable</td>
<td>July</td>
<td>July</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>Horse Lick Creek</td>
<td>53.8</td>
<td>Wadeable</td>
<td>July</td>
<td>July</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Horse Lick Creek</td>
<td>52.6</td>
<td>Wadeable</td>
<td>July</td>
<td>July</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Horse Lick Creek</td>
<td>50.9</td>
<td>Wadeable</td>
<td>July</td>
<td>July</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>Horse Lick Creek</td>
<td>45.4</td>
<td>Wadeable</td>
<td>July</td>
<td>July</td>
<td>260</td>
</tr>
<tr>
<td>8</td>
<td>Horse Lick Creek</td>
<td>44.8</td>
<td>Wadeable</td>
<td>July</td>
<td>July</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>Horse Lick Creek</td>
<td>39.7</td>
<td>Wadeable</td>
<td>July</td>
<td>July</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>Horse Lick Creek</td>
<td>34.5</td>
<td>Wadeable</td>
<td>July</td>
<td>July</td>
<td>300</td>
</tr>
<tr>
<td>11</td>
<td>Horse Lick Creek</td>
<td>15.9</td>
<td>Wadeable</td>
<td>July</td>
<td>July</td>
<td>253</td>
</tr>
<tr>
<td>12</td>
<td>Clover Bottom Creek</td>
<td>18.3</td>
<td>Wadeable</td>
<td>July</td>
<td>July</td>
<td>300</td>
</tr>
</tbody>
</table>

1. KIBI headwater streams = <6 mi² catchment area, wadeable streams = >10 mi², and the gray area of 6-10 mi² requires best professional judgment (Compton et al. 2003).
2. MBI headwater streams = <5 mi² catchment area and wadeable streams = 5-200 mi² (Pond et al. 2003).
3. KIBI sampling should occur mid-March through October (Compton et al. 2003). MBI sampling should occur February-May for headwater streams and June-September for wadeable streams (Pond et al. 2003).
4. KIBI sample site length should be 100-125 m for headwater streams and 100-200 m for wadeable streams (KDOW 2002). MBI sample site length is generally 100 m (Pond et al. 2003).
5. KIBI electrofishing duration should be 600-1,000 sec for headwater streams and 600-1,800 sec for wadeable streams (KDOW 2002).
Table 5. Kentucky index of biotic integrity (KIBI) results for each sample site, London District, July 2016.

<table>
<thead>
<tr>
<th>Site 1</th>
<th>Horse Lick Cr</th>
<th>Site 2</th>
<th>Horse Lick Cr</th>
<th>Site 3</th>
<th>Horse Lick Cr</th>
<th>Site 4</th>
<th>Horse Lick Cr</th>
<th>Site 5</th>
<th>Horse Lick Cr</th>
<th>Site 6</th>
<th>Horse Lick Cr</th>
<th>Site 7</th>
<th>Horse Lick Cr</th>
<th>Site 8</th>
<th>Horse Lick Cr</th>
<th>Site 9</th>
<th>Horse Lick Cr</th>
<th>Site 10</th>
<th>Horse Lick Cr</th>
<th>Site 11</th>
<th>Horse Lick Cr</th>
<th>Site 12</th>
<th>Clover Bm. Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNI</td>
<td>209</td>
<td>137</td>
<td>285</td>
<td>--</td>
<td>--</td>
<td>105</td>
<td>148</td>
<td>--</td>
<td>296</td>
<td>141</td>
<td>50</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>NAT</td>
<td>18</td>
<td>19</td>
<td>16</td>
<td>--</td>
<td>--</td>
<td>16</td>
<td>18</td>
<td>--</td>
<td>18</td>
<td>15</td>
<td>11</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>DMS</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>6</td>
<td>7</td>
<td>--</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>INT</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>6</td>
<td>5</td>
<td>--</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>9</td>
<td>10</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>6</td>
<td>7</td>
<td>--</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>%INSCT</td>
<td>35</td>
<td>34</td>
<td>54</td>
<td>--</td>
<td>--</td>
<td>46</td>
<td>56</td>
<td>--</td>
<td>46</td>
<td>40</td>
<td>36</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>%TOL</td>
<td>27</td>
<td>4</td>
<td>17</td>
<td>--</td>
<td>--</td>
<td>17</td>
<td>16</td>
<td>--</td>
<td>13</td>
<td>45</td>
<td>56</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>%FHW</td>
<td>95</td>
<td>91</td>
<td>65</td>
<td>--</td>
<td>--</td>
<td>73</td>
<td>72</td>
<td>--</td>
<td>69</td>
<td>30</td>
<td>34</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 1</th>
<th>Horse Lick Cr</th>
<th>Site 2</th>
<th>Horse Lick Cr</th>
<th>Site 3</th>
<th>Horse Lick Cr</th>
<th>Site 4</th>
<th>Horse Lick Cr</th>
<th>Site 5</th>
<th>Horse Lick Cr</th>
<th>Site 6</th>
<th>Horse Lick Cr</th>
<th>Site 7</th>
<th>Horse Lick Cr</th>
<th>Site 8</th>
<th>Horse Lick Cr</th>
<th>Site 9</th>
<th>Horse Lick Cr</th>
<th>Site 10</th>
<th>Horse Lick Cr</th>
<th>Site 11</th>
<th>Horse Lick Cr</th>
<th>Site 12</th>
<th>Clover Bm. Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT</td>
<td>57</td>
<td>61</td>
<td>51</td>
<td>--</td>
<td>--</td>
<td>52</td>
<td>61</td>
<td>--</td>
<td>63</td>
<td>55</td>
<td>53</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>DMS</td>
<td>80</td>
<td>59</td>
<td>49</td>
<td>--</td>
<td>--</td>
<td>61</td>
<td>73</td>
<td>--</td>
<td>53</td>
<td>66</td>
<td>66</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>INT</td>
<td>97</td>
<td>85</td>
<td>47</td>
<td>--</td>
<td>--</td>
<td>74</td>
<td>62</td>
<td>--</td>
<td>90</td>
<td>54</td>
<td>52</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>65</td>
<td>74</td>
<td>43</td>
<td>--</td>
<td>--</td>
<td>44</td>
<td>54</td>
<td>--</td>
<td>64</td>
<td>42</td>
<td>46</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>%INSCT</td>
<td>33</td>
<td>32</td>
<td>55</td>
<td>--</td>
<td>--</td>
<td>46</td>
<td>58</td>
<td>--</td>
<td>48</td>
<td>42</td>
<td>43</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>%TOL</td>
<td>70</td>
<td>92</td>
<td>80</td>
<td>--</td>
<td>--</td>
<td>80</td>
<td>82</td>
<td>--</td>
<td>86</td>
<td>54</td>
<td>49</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>%FHW</td>
<td>17</td>
<td>23</td>
<td>65</td>
<td>--</td>
<td>--</td>
<td>49</td>
<td>50</td>
<td>--</td>
<td>51</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

| KIBI headwater | -- |
| KIBI wadeable | 67 | 67 | 54 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |

TNI = total number individuals; NAT = native species richness; DMS = darter, madtom, and sculpin richness; INT = intolerant species richness; SL = simple lithophilic spawning species richness; %INSCT = relative abundance of insectivorous individuals; %TOL = relative abundance of tolerant individuals; %FHW = relative abundance of facultative headwater individuals

KIBI ratings: Excellent ≥71; Good 59-70; Fair 39-58; Poor 19-38; Very-Poor 0-18
Table 6. Kentucky macroinvertebrate bioassessment index (MBI) results for each sample site, London District, May 2016.

<table>
<thead>
<tr>
<th>Site</th>
<th>Horse Lick Cr.</th>
<th>Clover Bm Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNI</td>
<td>152</td>
<td>97</td>
<td>122</td>
<td>112</td>
<td>184</td>
<td>174</td>
<td>145</td>
<td>355</td>
<td>228</td>
<td>382</td>
<td>187</td>
<td>36</td>
<td>29</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>G-TR</td>
<td>31</td>
<td>29</td>
<td>22</td>
<td>36</td>
<td>24</td>
<td>21</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>G-EPT</td>
<td>13</td>
<td>9</td>
<td>7</td>
<td>11</td>
<td>8</td>
<td>11</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>mHBI</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>m%EPT</td>
<td>62</td>
<td>27</td>
<td>61</td>
<td>30</td>
<td>37</td>
<td>57</td>
<td>48</td>
<td>48</td>
<td>28</td>
<td>45</td>
<td>34</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>%Ephem</td>
<td>--</td>
</tr>
<tr>
<td>%Chir+Olig</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>%Clingers</td>
<td>39</td>
<td>48</td>
<td>34</td>
<td>83</td>
<td>53</td>
<td>43</td>
<td>42</td>
<td>45</td>
<td>71</td>
<td>56</td>
<td>70</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>G-TR</td>
<td>42</td>
<td>39</td>
<td>30</td>
<td>49</td>
<td>32</td>
<td>39</td>
<td>36</td>
<td>34</td>
<td>41</td>
<td>35</td>
<td>45</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>G-EPT</td>
<td>43</td>
<td>30</td>
<td>23</td>
<td>37</td>
<td>27</td>
<td>37</td>
<td>30</td>
<td>33</td>
<td>33</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>mHBI</td>
<td>94</td>
<td>87</td>
<td>98</td>
<td>94</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>m%EPT</td>
<td>85</td>
<td>37</td>
<td>84</td>
<td>42</td>
<td>51</td>
<td>78</td>
<td>66</td>
<td>66</td>
<td>39</td>
<td>62</td>
<td>47</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>%Ephem</td>
<td>--</td>
</tr>
<tr>
<td>%Chir+Olig</td>
<td>100</td>
<td>92</td>
<td>98</td>
<td>97</td>
<td>99</td>
<td>96</td>
<td>91</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>%Clingers</td>
<td>52</td>
<td>65</td>
<td>47</td>
<td>100</td>
<td>71</td>
<td>58</td>
<td>57</td>
<td>61</td>
<td>96</td>
<td>76</td>
<td>94</td>
<td>77</td>
<td>77</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>MBI headwater</td>
<td>--</td>
</tr>
<tr>
<td>MBI wadeable</td>
<td>69</td>
<td>58</td>
<td>63</td>
<td>70</td>
<td>63</td>
<td>68</td>
<td>63</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>71</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
</tbody>
</table>

TNI = total number individuals; G-TR = genus taxa richness; G-EPT = genus ephemeroptera, plecoptera, trichoptera richness; mHBI = modified Hilsenhoff biotic index; M%EPT = modified percent EPT abundance; %Ephem = percent ephemeroptera; %Chir+Olig = percent chironomidae+oligochaeta; %Clingers = percent primary clingers

MBI headwater ratings: Excellent ≥83; Good 72-82; Fair 48-71; Poor 24-47; Very-Poor 0-23

MBI wadeable ratings: Excellent ≥82; Good 75-81; Fair 50-74; Poor 25-49; Very-Poor 0-24
Table 7. Summary of BVET stream habitat attributes collected on the London District, July 2016 (sites #4 and 5 had no fast water units).

<table>
<thead>
<tr>
<th>Site #</th>
<th>Stream Name</th>
<th>Mean Avg. Depth (cm)</th>
<th>Mean Max. Depth (cm)</th>
<th>Mean Pool Residual Depth (cm)*</th>
<th>Avg. Wetted Width (m)</th>
<th>Avg. Bankfull Channel Width (m)</th>
<th>Avg. % Fines</th>
<th>Avg. Gradient (%)</th>
<th>Avg. Water Temp. (C)</th>
<th>Rosgen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horse Lick Creek</td>
<td>75 20 150 35 55</td>
<td></td>
<td></td>
<td>14.7 12.9 15.6</td>
<td>15 5</td>
<td>1</td>
<td>19 5</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Horse Lick Creek</td>
<td>45 25 75 45 30</td>
<td></td>
<td></td>
<td>14.2 14.6 18.7</td>
<td>13 10</td>
<td>1</td>
<td>22 2</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Horse Lick Creek</td>
<td>67 27 88 48 50</td>
<td></td>
<td></td>
<td>15.8 13.6 19.3</td>
<td>15 10</td>
<td>2</td>
<td>20 C,F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Horse Lick Creek</td>
<td>100 NA 135 NA NA</td>
<td></td>
<td></td>
<td>16.1 NA NA</td>
<td>15 NA</td>
<td>NA</td>
<td>NA NA</td>
<td>NA NA</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Horse Lick Creek</td>
<td>70 NA 150 NA NA</td>
<td></td>
<td></td>
<td>15.8 NA NA</td>
<td>40 NA</td>
<td>NA</td>
<td>NA NA</td>
<td>NA NA</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Horse Lick Creek</td>
<td>103 35 140 55 110</td>
<td></td>
<td></td>
<td>17.0 10.2 22.5</td>
<td>50 15</td>
<td>3</td>
<td>19 3</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Horse Lick Creek</td>
<td>60 30 110 73 35</td>
<td></td>
<td></td>
<td>15.4 15.8 19.0</td>
<td>23 10</td>
<td>2</td>
<td>19 C,F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Horse Lick Creek</td>
<td>95 20 150 45 NA</td>
<td></td>
<td></td>
<td>13.3 16.0 13.3</td>
<td>70 10</td>
<td>2</td>
<td>19 F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Horse Lick Creek</td>
<td>73 23 95 48 55</td>
<td></td>
<td></td>
<td>12.4 12.8 17.8</td>
<td>37 8</td>
<td>2</td>
<td>20 C,F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Horse Lick Creek</td>
<td>45 10 95 25 30</td>
<td></td>
<td></td>
<td>16.7 16.1 19.3</td>
<td>30 5</td>
<td>1</td>
<td>18 F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Horse Lick Creek</td>
<td>62 18 113 40 43</td>
<td></td>
<td></td>
<td>10.9 5.9 15.8</td>
<td>42 5</td>
<td>2</td>
<td>20 C,F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Clover Bottom Creek</td>
<td>48 18 87 35 40</td>
<td></td>
<td></td>
<td>10.0 9.2 11.3</td>
<td>18 8</td>
<td>2</td>
<td>19 F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

*Residual pool depth = average pool depth – riffle crest depth
Table 8. Stream habitat unit counts and area in pools (includes glides) and riffles (includes runs) observed during BVET habitat inventories at sample sites, London District, July 2016.

<table>
<thead>
<tr>
<th>Site #</th>
<th>Stream Name</th>
<th>Slow Water Pool</th>
<th>Glide Total</th>
<th>Fast Water Riffle</th>
<th>Run Total</th>
<th>Total Units</th>
<th>Habitat inventory length (m)</th>
<th>Pool Area (m²)</th>
<th>Riffle Area (m²)</th>
<th>Total Area (m²)</th>
<th>% Pool Area</th>
<th>% Riffle Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horse Lick Creek</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>394</td>
<td>5,130</td>
<td>579</td>
<td>5,709</td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td>2</td>
<td>Horse Lick Creek</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>397</td>
<td>5,519</td>
<td>498</td>
<td>6,016</td>
<td>92%</td>
<td>8%</td>
</tr>
<tr>
<td>3</td>
<td>Horse Lick Creek</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>330</td>
<td>3,065</td>
<td>2,046</td>
<td>5,111</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td>4</td>
<td>Horse Lick Creek</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>290</td>
<td>4,679</td>
<td>0</td>
<td>4,679</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>5</td>
<td>Horse Lick Creek</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>300</td>
<td>4,740</td>
<td>0</td>
<td>4,740</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td>Horse Lick Creek</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>300</td>
<td>3,767</td>
<td>765</td>
<td>4,532</td>
<td>83%</td>
<td>17%</td>
</tr>
<tr>
<td>7</td>
<td>Horse Lick Creek</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>345</td>
<td>4,910</td>
<td>666</td>
<td>5,577</td>
<td>88%</td>
<td>12%</td>
</tr>
<tr>
<td>8</td>
<td>Horse Lick Creek</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>315</td>
<td>2,773</td>
<td>1,692</td>
<td>4,465</td>
<td>62%</td>
<td>38%</td>
</tr>
<tr>
<td>9</td>
<td>Horse Lick Creek</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>458</td>
<td>4,811</td>
<td>1,982</td>
<td>6,793</td>
<td>71%</td>
<td>29%</td>
</tr>
<tr>
<td>10</td>
<td>Horse Lick Creek</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>316</td>
<td>4,698</td>
<td>565</td>
<td>5,263</td>
<td>89%</td>
<td>11%</td>
</tr>
<tr>
<td>11</td>
<td>Horse Lick Creek</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>272</td>
<td>1,890</td>
<td>524</td>
<td>2,414</td>
<td>78%</td>
<td>22%</td>
</tr>
<tr>
<td>12</td>
<td>Clover Bottom Creek</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>344</td>
<td>2,236</td>
<td>1,070</td>
<td>3,306</td>
<td>68%</td>
<td>32%</td>
</tr>
</tbody>
</table>
Table 9. Dominant and subdominant substrate types observed in pools (P; includes glides) and riffles (R; includes runs) during BVET habitat inventories at sample sites, London District, July 2016 (see Appendix B for substrate class descriptions). The first number in each pair is for dominant substrate, the second for subdominant substrate. For example, in pools at Horse Lick Creek site 1, cobble was dominant in 1 pool and boulder was subdominant in 1 pool.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Site 1</th>
<th>Horse Lick Cr.</th>
<th>Site 2</th>
<th>Horse Lick Cr.</th>
<th>Site 3</th>
<th>Horse Lick Cr.</th>
<th>Site 4</th>
<th>Horse Lick Cr.</th>
<th>Site 5</th>
<th>Horse Lick Cr.</th>
<th>Site 6</th>
<th>Horse Lick Cr.</th>
<th>Site 7</th>
<th>Horse Lick Cr.</th>
<th>Site 8</th>
<th>Horse Lick Cr.</th>
<th>Site 9</th>
<th>Horse Lick Cr.</th>
<th>Site 10</th>
<th>Horse Lick Cr.</th>
<th>Site 11</th>
<th>Horse Lick Cr.</th>
<th>Site 12</th>
<th>Clover Bm. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small gravel</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large gravel</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobble</td>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
<td>0.2</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>2.0</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boulder</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>0.1</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrock</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10. Large wood per kilometer observed during BVET habitat inventories at sample sites, London District, July 2016 (see Appendix B for large wood size classes).

<table>
<thead>
<tr>
<th>Site #</th>
<th>Stream Name</th>
<th>LW1/ km</th>
<th>LW2/ km</th>
<th>LW3/ km</th>
<th>LW4/ km</th>
<th>RW/ km</th>
<th>Total LW/km</th>
<th>LW1</th>
<th>LW2</th>
<th>LW3</th>
<th>LW4</th>
<th>RW</th>
<th>Total LW</th>
<th>Inventory Distance (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horse Lick Creek</td>
<td>53</td>
<td>15</td>
<td>46</td>
<td>0</td>
<td>20</td>
<td>135</td>
<td>21</td>
<td>6</td>
<td>18</td>
<td>0</td>
<td>8</td>
<td>53</td>
<td>0.39</td>
</tr>
<tr>
<td>2</td>
<td>Horse Lick Creek</td>
<td>25</td>
<td>8</td>
<td>18</td>
<td>10</td>
<td>10</td>
<td>71</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>28</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>Horse Lick Creek</td>
<td>12</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>3</td>
<td>30</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>0.33</td>
</tr>
<tr>
<td>4</td>
<td>Horse Lick Creek</td>
<td>0</td>
<td>0.29</td>
</tr>
<tr>
<td>5</td>
<td>Horse Lick Creek</td>
<td>13</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>43</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0.30</td>
</tr>
<tr>
<td>6</td>
<td>Horse Lick Creek</td>
<td>47</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>73</td>
<td>14</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>0.30</td>
</tr>
<tr>
<td>7</td>
<td>Horse Lick Creek</td>
<td>9</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>3</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>0.35</td>
</tr>
<tr>
<td>8</td>
<td>Horse Lick Creek</td>
<td>22</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>7</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>0.32</td>
</tr>
<tr>
<td>9</td>
<td>Horse Lick Creek</td>
<td>22</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>33</td>
<td>10</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>0.46</td>
</tr>
<tr>
<td>10</td>
<td>Horse Lick Creek</td>
<td>54</td>
<td>0</td>
<td>44</td>
<td>0</td>
<td>9</td>
<td>108</td>
<td>17</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>3</td>
<td>34</td>
<td>0.32</td>
</tr>
<tr>
<td>11</td>
<td>Horse Lick Creek</td>
<td>29</td>
<td>0</td>
<td>44</td>
<td>0</td>
<td>4</td>
<td>77</td>
<td>8</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>21</td>
<td>0.27</td>
</tr>
<tr>
<td>12</td>
<td>Clover Bottom Creek</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0.34</td>
</tr>
</tbody>
</table>
Table 11. Riffle stability index results (Kappesser 2002), based on pebble count data (intermediate b-axis measured in mm) collected at sample sites, London District, 2016.

<table>
<thead>
<tr>
<th>Site #</th>
<th>Stream Name</th>
<th>Median Particle Size</th>
<th>Riffle Stability Index</th>
<th>RSI Condition</th>
<th>Bar Sample Geometric Mean</th>
<th>Relative Bed Stability</th>
<th>Log of Relative Bed Stability</th>
<th>Median Particle Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horse Lick Creek</td>
<td>85.8</td>
<td>Poor</td>
<td>140.8</td>
<td>0.33</td>
<td>-0.49</td>
<td>18</td>
<td>46 96 126</td>
</tr>
<tr>
<td>2</td>
<td>Horse Lick Creek</td>
<td>69.3</td>
<td>Good</td>
<td>151.4</td>
<td>0.48</td>
<td>-0.32</td>
<td>20</td>
<td>72 180 240</td>
</tr>
<tr>
<td>3</td>
<td>Horse Lick Creek</td>
<td>63.3</td>
<td>Good</td>
<td>161.1</td>
<td>0.56</td>
<td>-0.25</td>
<td>38</td>
<td>90 310 660</td>
</tr>
<tr>
<td>4</td>
<td>Horse Lick Creek</td>
<td>66.2</td>
<td>Good</td>
<td>151.4</td>
<td>0.54</td>
<td>-0.27</td>
<td>36</td>
<td>82 210 490</td>
</tr>
<tr>
<td>5</td>
<td>Horse Lick Creek</td>
<td>87.8</td>
<td>Poor</td>
<td>127.1</td>
<td>0.33</td>
<td>-0.48</td>
<td>22</td>
<td>42 74 106</td>
</tr>
<tr>
<td>6</td>
<td>Horse Lick Creek</td>
<td>71.2</td>
<td>Fair</td>
<td>120.6</td>
<td>0.65</td>
<td>-0.19</td>
<td>42</td>
<td>78 130 210</td>
</tr>
<tr>
<td>7</td>
<td>Horse Lick Creek</td>
<td>80.2</td>
<td>Fair</td>
<td>120.3</td>
<td>0.55</td>
<td>-0.26</td>
<td>36</td>
<td>66 108 130</td>
</tr>
<tr>
<td>8</td>
<td>Horse Lick Creek</td>
<td>65.3</td>
<td>Good</td>
<td>128.9</td>
<td>0.67</td>
<td>-0.18</td>
<td>40</td>
<td>86 170 240</td>
</tr>
<tr>
<td>9</td>
<td>Horse Lick Creek</td>
<td>88.6</td>
<td>Poor</td>
<td>122.2</td>
<td>0.39</td>
<td>-0.41</td>
<td>22</td>
<td>48 86 108</td>
</tr>
<tr>
<td>10</td>
<td>Horse Lick Creek</td>
<td>93.2</td>
<td>Poor</td>
<td>128.0</td>
<td>0.31</td>
<td>-0.51</td>
<td>20</td>
<td>40 68 92</td>
</tr>
<tr>
<td>11</td>
<td>Horse Lick Creek</td>
<td>95.3</td>
<td>Poor</td>
<td>113.5</td>
<td>0.25</td>
<td>-0.61</td>
<td>14</td>
<td>28 48 60</td>
</tr>
<tr>
<td>12</td>
<td>Clover Bottom Creek</td>
<td>89.6</td>
<td>Poor</td>
<td>122.9</td>
<td>0.36</td>
<td>-0.45</td>
<td>22</td>
<td>44 74 100</td>
</tr>
</tbody>
</table>

Riffle stability index (RSI) condition rating: Good <70, Fair 70-85, Poor >85
Appendix A: Field Methods for Stream Inventory
Sampling Strategy

Day 1 – Macroinvertebrate collection & BVET Inventory
- All team to first site to learn site documentation, site layout, and macroinvertebrate and habitat sampling methods
- While 2 team members conduct the BVET inventory and site layout, 2 or more other team members can collect macroinvertebrates
- Split into several teams (depending on team size) to visit and document other sites, layout sites, and sample macroinvertebrates and habitat

Day 2 – Efish & Pebble Counts
- Perform efish, pebble, and bar-count sampling at sites visited on day 1
- If the team is large enough, the team can split so that two teams are continuing with site documentation, site layout, macroinvertebrate, and habitat sampling methods

Day 3
- Continue with approach from day 2, allowing at least 1 day between macroinvertebrate and fish sampling
- If the fish sampling team catches up with the layout team, then take a day to split into several layout teams as during day 1
- When layout team finishes all sites they can rejoin fish sampling team

This approach should maximize team efficiency and prevent biases associated with sampling fish and macroinvertebrates within the same site in the same day.

Site Documentation

Objective
- Record location and description of site for reporting purposes

Methods
- **Directions to site**
 - Record roads taken to parking area
 - Record trails walked to site
 - Document route to site on quadrangle map
- **GPS**
 - Record GPS coordinates at start and end of inventory
- **Photos**
 - Take digital photo from downstream end looking up, upstream end looking down
 - Photograph any pertinent features within the site that may influence habitat and fauna, example, road or trail crossings, erosion, etc.
- **Written description**
 - Record comments on land use in the site area, for example private land with mowed lawns, all forested, pasture lands, etc.
 - Record comments on other features that may be influencing stream conditions
Site Layout

Objective - Use consistent method to lay out site for fish and macroinvertebrate sampling

Methods

- Locate 1 – 2 riffles or runs and determine the average wetted width by making several measurements and computing the average. Measure width perpendicular to thalweg.
 - If the average wetted width is less than or equal to 3.0 m, then the site length will be 120 m
 - If the average wetted width is greater than or equal to 7.5 m, then the site length will be 300 m
 - If the average wetted width is between 3.0 and 7.5 m, then site length is 40-times the average wetted width, example: average wetted width = 5 m; site length = 5 x 40 = 200m

- Hang a double orange flag at the downstream end of the site. Attach topofil from a hipchain and walk to the midpoint of the site, hang a single orange flag, then continue to the end of the site and hang another single orange flag (hanging the flags to layout the site can be done while performing the BVET inventory)

- Record the average wetted width and site length on the datasheet

- Sites will not be moved to avoid road or trail crossings – moving sites violates the assumptions of the stratified random sample design and invalidates statistical analysis. Document these features fully with photos and written descriptions

- Always begin sites at the downstream end of a defined habitat unit, end points should be at the exact distance as described above

- In large streams make sure the site includes all of a fast water habitat unit and all of a slow water habitat unit

Habitat Inventory (BVET)

Objective – Characterize stream habitat attribute within the sample site.

Methods

- Collect attribute as described in Section 2 of Roghair and Nuckols (2005) (Appendix B)

- Increase frequency of paired (sub-) samples to include at least 3 fast and 3 slow water units within each site
 - Where less than 3 fast or slow occur, sub-sample all units

- Start and end data collection at habitat unit breaks
 - This may extend habitat data collection slightly beyond end of sample site (however, still hang site-end flag at calculated distance, not at the upper end of habitat unit)
Macroinvertebrates Inventory

Objective - Collect assemblage sample

Methods

- Using D-frame nets and a seine collect macroinvertebrates using the riffle sample and multi-habitat sample methods described by KDOW (2011)

- Where possible, keep macroinvertebrate samples within designated sites. If this is not possible be sure to indicate on datasheet.

Electrofishing Inventory

Objective - Determine relative abundance and determine catch-per-unit-effort (CPUE). Note: we are not attempting to estimate population size or density for individual species, only assessing the fish assemblage

Methods (based on sampling strategies discussed and approved by R8 and SRS personnel in 3/2005)

- Electrofishing starts in same location as habitat inventory

- Electrofishing ends at location designated in site layout process
 - Habitat inventory may extend beyond end of designated site
 - DO NOT extend electrofishing sample beyond end of designated site

- Single-pass DC backpack electrofishing

- One shocker, 3 netters (a net on the probe can be the 3rd net)

- No blocknets

- Electrofishing effort will be equal to 1.0 seconds for each 1.0 m² of wetted area
 - note: this will standardize our effort and remove the potentially confounding effect of changes in wetted width relative to the bankfull channel width in wet or dry years
 - derived Warren et al. data on electrofishing effort in MS streams

- Fish will be counted and released at the site, except for a voucher specimen for each species; endangered species lists will be reviewed before sampling

- Record age-0 fish and all fish older than age-0 separately for each species

- Keep all relic mussel shells encountered

- Record number of crayfish captured (don’t actively net crayfish, but bucket any that end up in the net). If also vouchering fish then keep a couple crayfish specimens (ideally Form I & II males)
Pebble Count Inventory

Objective - Determine the riffle stability index (RSI), bar sample geometric mean, and median particle sizes.

Methods

- Pebble count data is collected using methods modified from those in Kappesser (2002) to characterize the substrate composition of sample sites

- Pebble counts are performed in riffles designated for electrofishing by walking transects perpendicular to the flow within the bankfull channel (Harrelson et al. 1994)

- Walk the transect beginning at the edge of the bankfull channel on one side of the stream and walk heel-to-toe across the stream channel to the opposite bank

- At each step pick up the pebble at the tip of your toe and measure its intermediate axis with a ruler to the nearest millimeter

- For very large particles, the same particle is counted as many times it is encountered

- These procedures are repeated until at least 200 measurements are recorded; Transects are not terminated until the opposite bank is reached even if this results in more than 200 measurements

- Transects are distributed throughout the riffle; If detritus, LW, or other organic materials are encountered the rock substrate found directly below them is sampled

- For the bar sample, measure 30 freshly moved dominant large particles residing on a bar or similar depositional feature to estimate the largest particle size transported at flows of bankfull and above; Freshness is evaluated by lack of growing vegetation and lack of embeddedness of the particles

- The depositional feature must be in close proximity to the riffle being examined, and can include laterally attached bars, side bars, and central bars; The entire bar should be visually inspected to identify the dominant large size of particle present; If a bar deposit cannot be found, trained field personnel may select the large mobile particles from within the riffle; For each particle, measure the intermediate axis to the nearest millimeter

Appendix B: Field Methods for Habitat Inventory
Guide to Stream Habitat Characterization using the BVET Methodology on the Daniel Boone National Forest, KY

Prepared by:

UNITED STATES DEPARTMENT OF AGRICULTURE
FOREST SERVICE
SOUTHERN RESEARCH STATION
CENTER FOR AQUATIC TECHNOLOGY TRANSFER (CATT)
1710 Ramble Rd.
Blacksburg, VA 24060-6349

C. Andrew Dolloff, Team Leader

Manual Revised - June 2011
Table of Contents

Introduction .. 31
References cited in this manual: .. 32
Outline of BVET Habitat Inventory ... 33

Section 1: Getting Started .. 34
 Equipment List ... 34
 Duties ... 34
 Header Information .. 35
 Starting the Inventory ... 35

Section 2: Stream Attributes ... 36
 Unit Type (see abbreviations) .. 36
 Unit Number (#) ... 37
 Distance (m) .. 38
 Estimated Width (m) ... 38
 Maximum and Average Depth (cm) .. 39
 Ripple Crest Depth (cm) ... 39
 Dominant and Subdominant Substrate (1-9) .. 40
 Percent Fines (%) .. 42
 Large Wood (1-4 and rootwad) ... 42
 Actual Width (m) ... 43
 Bankfull Channel Width (m) .. 43
 Riparian Width (m) .. 44
 Gradient (%) ... 45
 Water Temperature (C) .. 45
 Photo (ID#) .. 45
 Features ... 46

Section 3: Wrapping Up ... 47

Section 4: Summary ... 48

Section 5: GPS Instructions .. 49
 Garmin BVET Waypoint Labels: .. 49
 How to Find a Waypoint on GPS: ... 49
 Changing Waypoints: ... 49
 Garmin GPS Oregon 400T Cheatsheet ... 50

Appendix: Field Guide, Equipment Checklist, Rosgen Worksheet .. 51
 Unit Types ... 51
 Features ... 52
 Substrates ... 52
 Large Wood .. 52
 Rosgen Channel Types ... 52
 Measuring Riparian Width (paired fast-water units only) ... 52
 End inventory ... 53
 Equipment Checklist ... 53
 Rosgen Measurements ... 54
 Rosgen Worksheet ... 55
Introduction

The Basinwide Visual Estimation Technique (BVET) is a versatile tool used to assess streamwide habitat conditions in wadeable size streams and rivers. A team of two individuals performs the inventory using two-stage visual estimation techniques described in Hankin and Reeves (1988) and Dolloff et al. (1993). In its most basic form the BVET combines visual estimates with actual measurements to provide a calibrated estimate of stream area with confidence intervals, however the team may inventory any number of other habitat attributes as they walk the length of the stream. Experienced teams can inventory an average of 2-3 km per day, but this will vary depending on stream size and the number of stream attributes inventoried.

Before a team begins a BVET inventory they must receive adequate training, both in the classroom and in the field. Estimating and measuring a large number of habitat attributes can confuse and overwhelm an inexperienced team. Individuals must have an understanding of the basic concepts behind the BVET and be familiar with habitat attributes before they can effectively and efficiently perform an inventory.

In summer 2004, resource managers on the Daniel Boone National Forest (DBNF) requested that the USFS Center for Aquatic Technology Transfer (CATT) implement modified BVET inventories to inventory stream sites previously inventoried in the 1990’s. The 1990’s inventories followed methods detailed in the ‘Daniel Boone National Forest Stream Inventory Work Plan and Sampling Techniques Manual’, which were similar in nature to the BVET habitat inventory. After discussion with resource managers from the DBNF, we scaled down the original protocol, eliminating several attributes and modifying others to maximize inventory efficiency during our limited time on the Forest. In summer 2005 the DBNF opted to use identical BVET methods as National Forests in Virginia and North Carolina, which are only slightly different from methods used in Kentucky in 2004.

This document was developed to serve as a guide for classroom and field instructions specific to the ONF BVET habitat inventory and to provide a post-training reference for field teams. It includes an overview of the BVET inventory, defines habitat attributes, instructs how and when to measure attributes, and provides reference sheets for use in the field. Each trainee should receive a copy of this manual and is encouraged to take notes in the spaces provided.

We used an abbreviated version of the BVET to sample habitat within sample sites only. Paired samples were collected more frequently than described here because sample sites were short. Stream attributes were collected as described in Section 2.
References cited in this manual:

Outline of BVET Habitat Inventory

1. Enter ‘Header’ information on the data sheet: ‘Header’ information includes date, stream, start location, team, etc. and is vitally important to record for future reference.

2. Enter downstream of the starting point, then move upstream and begin the inventory. Tie off the hipchain, proceed upstream to the starting point, reset the hipchain to zero, and proceed upstream estimating parameters and recording data in every habitat unit.

3. At the paired sample units perform visual estimates, then perform measurements. Pair a minimum of 3 fast and 3 slow water units; pair more if possible.

4. Progress upstream estimating attributes for every unit until the next paired sample unit is reached, then repeat step 4.

The team should also take care to record roads, trails, tributaries, dams, waterfalls, road crossing types, riparian features (wildlife openings, trails, campsites, roads, timber harvest, etc.), and other pertinent stream features as they progress upstream. Be sure to record hipchain distances when noting such features. Some features may also require a picture number to be associated with them.

The following sections describe the BVET habitat inventory in detail:

- **Section 1**: Getting Started – equipment, header info, random numbers, starting the inventory
- **Section 2**: Habitat Attributes – definitions, how to estimate or measure, when to record
- **Section 3**: Wrapping Up – what to do when the inventory is completed
- **Section 4**: Summary
- **Section 5**: GPS Instructions
- **Appendix**: field guide, random number tables, equipment checklist
Section 1: Getting Started

Equipment List

- Hipchain
- Extra string for hipchain
- Wading rod
- 50 m tape measure
- Clinometer
- Datalogger
- Flagging
- Thermometer
- GPS unit
- Topographic map w/NHD_ID
- Cell Phone
- First Aid Kit
- Rain Gear (optional)

- Camera
- Backpack
- Pencils
- Markers
- Waterproof backup datasheets
- Clipboard
- BVET field guide on waterproof paper
- Felt bottom wading boots or waders
- Water
- Water Filter
- Toilet Paper

The BVET team consists of two individuals, the ‘observer’ and the ‘recorder’. The observer wears the hipchain and carries the wading rod. The recorder wears the data logger and carries other equipment in the backpack. The duties of each individual are listed below.

Duties

<table>
<thead>
<tr>
<th>Observer</th>
<th>Recorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designate habitat units</td>
<td>Locate changes in NHD_ID</td>
</tr>
<tr>
<td>Measure distance</td>
<td>Record data</td>
</tr>
<tr>
<td>Estimate width</td>
<td>Determine paired sample location</td>
</tr>
<tr>
<td>Estimate depths</td>
<td>Classify and count Large Wood (LW)</td>
</tr>
<tr>
<td>Classify substrates</td>
<td>Photo-documentation</td>
</tr>
<tr>
<td>Locate features</td>
<td>Document features</td>
</tr>
<tr>
<td>Estimate percent fines</td>
<td>GPS-documentation</td>
</tr>
</tbody>
</table>

Both team members are needed to measure actual widths, channel widths, riparian areas, gradient, and water temperature at designated units. Although the team has assigned duties, they should not hesitate to consult with each other if they have questions or feel that a mistake may have been made. Working as a team will provide the best possible results.
Header Information

Header information is vitally important for future reference. Take the time to record all categories completely and accurately.

- **Stream Name**: Full name of stream
- **District**: National Forest District name
- **Quad**: USGS 1:24,000 quadrangle name
- **Date**: Record date(s) of inventory
- **Recorder**: Full name of recorder
- **Observer**: Full name of observer
- **GPS**: Record at start and end locations, always use NAD83 CONUS, UTM
- **Location**: Detailed written description of start point, include landmarks, road #, etc.
- **Comments**: Record signs of activity in area, water conditions, other pertinent information

Starting the Inventory

After the team has organized their gear, determined their measurement interval, selected a random number, and recorded all the header information they are ready to begin the habitat inventory.

The observer should enter the stream slightly downstream of the starting point, tie off the hipchain, progress upstream to the starting point, reset the hipchain to zero and begin walking upstream through the first habitat unit. As the observer moves upstream they use the wading rod to measure depth at several locations in the habitat unit and make observations of unit type, width, substrates, and percent fines. When they reach the upstream end of the habitat unit they stop, turn to face the unit and report the unit type, maximum and average depth, riffle crest depth (where appropriate), dominant and subdominant substrate classes, percent fines, estimated width, and hipchain distance to the recorder.

As the observer moves upstream through the unit, the recorder follows behind, recording the amount of LW in the habitat unit. The recorder also assigns a number to the habitat unit. The recorder tells the observer if a unit is designated for measurements (i.e. if it is a ‘paired sample’ unit) only after they have recorded visual estimates.

The team continues upstream making estimates in every habitat unit and making estimates and measurements in every paired sample unit until the inventory endpoint is reached.

Definitions of habitat attributes, how to measure and when to record them, and what to do when the inventory is complete are covered in the following sections.
Section 2: Stream Attributes

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riffle</td>
<td>R</td>
<td>Fast water, turbulent, gradient <12%; shallow reaches characterized by water flowing over or around rough bed materials that break the surface during low flows; also include rapids (turbulent with intermittent whitewater, breaking waves, and exposed boulders), chutes (rapidly flowing water within narrow, steep slots of bedrock), and sheets (shallow water flowing over bedrock) if gradient <12%</td>
</tr>
<tr>
<td>Cascade</td>
<td>C</td>
<td>Fast water, turbulent, gradient >12%; highly turbulent series of short falls and small scour basins, with very rapid water movement; also include sheets (shallow water flowing over bedrock) and chutes (rapidly flowing water within narrow, steep slots of bedrock) if gradient >12%</td>
</tr>
<tr>
<td>Run</td>
<td>RN</td>
<td>Fast water, non-turbulent, gradient <12%; deeper than riffles with little or no surface agitation or flow obstructions and a flat bottom profile</td>
</tr>
<tr>
<td>Pool</td>
<td>P</td>
<td>Slow water, surface turbulence may or may not be present, gradient <1%; generally deeper and wider than habitat immediately upstream and downstream, concave bottom profile; includes dammed pools, scour pools, and plunge pools</td>
</tr>
<tr>
<td>Glide</td>
<td>G</td>
<td>Slow water, no surface turbulence, gradient <1%; shallow with little to no flow and flat bottom profile</td>
</tr>
<tr>
<td>Underground</td>
<td>UNGR</td>
<td>Stream channel is dry or not containing enough water to form distinguishable habitat units</td>
</tr>
</tbody>
</table>

*modified from Armantrout (1998)

How to estimate:

Habitat units are separated by ‘breaks’. Breaks can be obvious physical barriers, such as a debris dam separating two pools or a small waterfall separating a pool and riffle, or may be less obvious transitional areas. Questions often arise as to whether a break is substantial enough to split two habitat units and where the exact location of the break occurs. When in doubt, the observer should consult with the recorder and the team should ‘think like a fish’. To determine if a break should be made, consider whether a fish would have to make an effort to move across the break and into the next habitat unit. If not, then it is probably a single habitat unit.

The channel may have both pool and riffle type habitat in the same cross-sectional area. Determine the predominate habitat type and record it as the unit type. For example if an area contains both pool and riffle, but the majority of the flow is into and out of the pool habitat, then call the unit a pool.

Questions also often arise as to the minimum size of individual habitat units. Generally, if a habitat unit is not at least as long as the wetted channel is wide, then do not count it as a separate habitat unit. This rule may need to be adjusted for streams wider than 5 m. Use best professional judgment in such cases.

See the section 2.1 for a list of features that should also be recorded while performing the inventory.

When to record: every habitat unit
Unit Number (#)

Definition:
Count of habitat units of similar types, used to determine location of paired sample units

How to estimate:
When counting habitat units, group pools and glides (slow water) together, and group riffles, runs, and cascades (fast water) together. For example, consider the following sequence of habitat units:

Habitat units in this sequence would be counted in the following manner (similar types are shaded same color):

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>Unit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>2</td>
</tr>
<tr>
<td>P</td>
<td>3</td>
</tr>
<tr>
<td>R</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>R</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
</tr>
<tr>
<td>R</td>
<td>5</td>
</tr>
<tr>
<td>P</td>
<td>5</td>
</tr>
<tr>
<td>RN</td>
<td>6</td>
</tr>
<tr>
<td>P</td>
<td>6</td>
</tr>
<tr>
<td>R</td>
<td>7</td>
</tr>
</tbody>
</table>

In the above example, the team has counted six slow water (pool/glide) units and seven fast water (riffle/run/cascade) units.

When to record: every habitat unit; not recorded for features
Distance (m)

Definition:
Number of meters (rounded to the whole meter) from the start of the inventory to the upstream end of the habitat unit or distance from the start of the inventory to upstream end of a feature, used as spatial reference for data analysis and to locate features in the future.

How to estimate:
The observer walks upstream in the middle of the stream channel with a hipchain measuring device. When they reach the upstream break between habitat units or the upstream end of a feature they stop and report the distance to the recorder.

Care should be taken to keep the hipchain string in the middle of the stream, especially around bends and meanders. If the hipchain should break, retreat to the location where the break occurred, tie off the hipchain, and continue. If the hipchain is reset for any reason be sure to note it in the comments.

When to record: every habitat unit and feature

Estimated Width (m)

Definition:
Average wetted width of the habitat unit as estimated visually (typically to half-meter accuracy), used to calculate stream area. Wetted width is the distance from the edge of the water on one side of the main channel to the edge of the water on the opposite side of the main channel.

How to estimate:
The observer notes the general shape and width of the unit while walking to the upstream end. When they reach the upstream end of the unit the observer stops, turns to face the unit, and estimates the average wetted width. Measure the wetted width of the stream before starting each day to calibrate yourself.

When to record: every habitat unit
Maximum and Average Depth (cm)

Definitions:
Maximum Depth – vertical distance from substrate to water surface at deepest point in habitat unit
Average Depth – average vertical distance from substrate to water surface in habitat unit

How to estimate:
The observer uses a wading rod marked in 5 cm increments to measure water depth as they walk upstream through the habitat unit. Water depth in deepest spot is recorded as the maximum depth. Average depth is the average of several depth measurements taken throughout the habitat unit.

When to record: every habitat unit

Riffle Crest Depth (cm)

Definition:
Vertical distance from the substrate to the water surface at the deepest point in the riffle crest. The riffle crest is the shallowest continuous line (usually not straight) across the channel where the water surface becomes continuously riffled in the transition area between a riffle (or a run or cascade) and a pool (or glide) (Armantrout 1998); think of it as the last place water would flow out of the pool if the riffle ran dry.

How to estimate:
When the observer reaches the upstream end of a riffle (or a run or cascade) leading into a pool (or glide), they use the wading rod to measure the deepest point in the riffle crest. Record the depth in the RCD column for the riffle habitat row.

When to record: at the upstream end of any riffle, run, or cascade leading into a pool or glide
Dominant and Subdominant Substrate (1-9)

Definitions:
Dominant Substrate – size class of stream bed material that covers the greatest amount of surface area within the wetted channel of the habitat unit.

Subdominant Substrate – size class of stream bed material that covers the 2nd greatest amount of surface area within the wetted channel of the habitat unit.

How to estimate:
The following size classes are used to categorize substrates*. The substrate ‘Number’ is entered into the dominant and subdominant substrate columns on the datasheet.

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Size (mm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Matter</td>
<td>1</td>
<td></td>
<td>dead leaves, detritus, etc. – not live plants</td>
</tr>
<tr>
<td>Clay</td>
<td>2</td>
<td></td>
<td>sticky, holds form when rolled into a ball</td>
</tr>
<tr>
<td>Silt</td>
<td>3</td>
<td></td>
<td>slippery, does not hold form when rolled into a ball</td>
</tr>
<tr>
<td>Sand</td>
<td>4</td>
<td>silt – 2</td>
<td>grainy, does not hold form when rolled into a ball</td>
</tr>
<tr>
<td>Small Gravel</td>
<td>5</td>
<td>3-16</td>
<td>sand to thumbnail</td>
</tr>
<tr>
<td>Large Gravel</td>
<td>6</td>
<td>17-64</td>
<td>thumbnail to fist</td>
</tr>
<tr>
<td>Cobble</td>
<td>7</td>
<td>65-256</td>
<td>fist to head</td>
</tr>
<tr>
<td>Boulder</td>
<td>8</td>
<td>>256</td>
<td>larger than head</td>
</tr>
<tr>
<td>Bedrock</td>
<td>9</td>
<td></td>
<td>solid rock, parent material, may extend into bank</td>
</tr>
</tbody>
</table>

* these size classes are based on the modified Wentworth scale

As the observer walks through the unit they scan the substrate. When they reach the upstream end of the unit they stop, turn to face the unit, and determine the dominant and subdominant substrate classes.

Estimate substrate size along the intermediate axis (b-axis). The b-axis is not the longest or shortest axis, but the intermediate length axis (see below). It is the axis that determines what size sieve the particle could pass through. Remember that your eyes are naturally drawn to larger size substrates. Be careful not to bias your estimate by focusing on the large size substrate.

Some units will contain a mixture of particle sizes. Consult with the recorder and use your best professional judgment to choose the dominant and subdominant sizes.

In units where the substrate is covered in moss, algae, or macrophytes classify the underlying substrate and make note of the plant growth in the comments. Only call organic substrate where there is dead and down leaves or other detritus covering the bottom of the unit.

When to record: every habitat unit
Rosgen Channel Type (A-G)

Definitions:
Stream channel classification system described in Rosgen (1996) based on entrenchment, width/depth ratio, sinuosity, and percent slope

How to Measure:
Before the team begins the inventory they should make the measurements described below to determine the channel type. Channel types are based on the following channel characteristics:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrenchment</td>
<td>< 1.4</td>
<td>1.4 – 2.2</td>
<td>> 2.2</td>
<td>n/a</td>
<td>> 2.2</td>
<td>< 1.4</td>
<td>< 1.4</td>
</tr>
<tr>
<td>W/D Ratio</td>
<td>< 12</td>
<td>> 12</td>
<td>> 12</td>
<td>> 40</td>
<td>< 12</td>
<td>> 12</td>
<td>< 12</td>
</tr>
<tr>
<td>Sinuosity</td>
<td>1 – 1.2</td>
<td>> 1.2</td>
<td>> 1.2</td>
<td>n/a</td>
<td>> 1.5</td>
<td>> 1.2</td>
<td>> 1.2</td>
</tr>
<tr>
<td>Slope (%)</td>
<td>4 – 9.9</td>
<td>2 – 3.9</td>
<td>< 2</td>
<td>< 4</td>
<td>< 2</td>
<td>< 2</td>
<td>2 – 3.9</td>
</tr>
</tbody>
</table>

Although we record channel type for every unit, it was designed to describe a reach of stream. Our main objective here is to locate changes between channel types, which could either be abrupt (such as change from a B to a G near a road crossing) or less obvious transitional areas (such as a natural transition from a B to an A channel as you move upstream). If you think channel type may have changed take the time to make the calculations listed below to determine the channel type for the reach you are entering.

Full channel type descriptions and how to measure each of the channel characteristics in the table above can be found in Rosgen (1998). Never perform measurements in a pool, always attempt to find a run or deep riffle with well-defined bankfull indicators to perform measurements. A summary of each is listed below:

Entrenchment (page 31 & 32 in Rosgen field guide):
- locate suitable riffle or run area for bankfull measurement (page 24-25 in Rosgen field guide)
- measure the bankfull width and the maximum bankfull depth
- stretch a tape across the channel at 2x the maximum bankfull depth (this is the flood prone area)
- divide the flood prone area width by the bankfull width to determine entrenchment ratio

Width to Depth Ratio (page 32 in Rosgen field guide):
- locate suitable riffle or run area for bankfull measurement (page 24-25 in Rosgen field guide)
- measure the bankfull width and the maximum bankfull depth
- divide bankfull width by depth to determine width to depth ratio

Sinuosity (need aerial photo to determine)

Slope (page 37 in Rosgen field guide):
- Measure riffle to riffle gradient using clinometer

When to measure: every paired fastwater habitat unit

* record for every fastwater paired unit, but remember this is describing a reach characteristic – see above

Percent Fines (%)

Definition:
Percent of the total surface area of the stream bed in the wetted area of the habitat unit that consists of sand, silt, or clay substrate particles (i.e. particles < 2 mm diameter).

How to estimate:
As the observer walks through the habitat unit they note the amount of sand, silt, and clay in the habitat unit. When they reach the upstream end of the unit, they stop, turn to face the unit and estimate the amount of the total surface area within the wetted channel that consists of sand, silt, or clay.

Where to estimate: every habitat unit

Large Wood (1-4 and rootwad)

Definition:
Count of dead and down wood within the bankfull channel of a habitat unit

How to estimate:
The recorder classifies and counts LW as they walk through the habitat unit. LW counts are grouped by the size classes listed below:

<table>
<thead>
<tr>
<th>Category</th>
<th>Length (m)</th>
<th>Diameter (cm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-5</td>
<td>10-55</td>
<td>short, skinny</td>
</tr>
<tr>
<td>2</td>
<td>1-5</td>
<td>>55</td>
<td>short, fat</td>
</tr>
<tr>
<td>3</td>
<td>>5</td>
<td>10-55</td>
<td>long, skinny</td>
</tr>
<tr>
<td>4</td>
<td>>5</td>
<td>>55</td>
<td>long, fat</td>
</tr>
<tr>
<td>RW</td>
<td>rootwad</td>
<td>rootwad</td>
<td>roots on dead and down tree</td>
</tr>
</tbody>
</table>

Only count wood that is:
- 1 m in length and > 10.0 cm in diameter
- Within the bankfull channel
- Fallen, not standing dead

Additionally:
- Count rootwads separately from attached pieces of LW
- Estimate the diameter of LW at the widest end of the piece
- A piece that is forked, but is still joined counts as only one piece of LW
- Only count each piece one time, do not count a piece that is in two habitat units twice
- Enter the total count for each size category into the appropriate column on the datasheet

Where to estimate: every habitat unit
Actual Width (m)

Definition:
Average wetted width of the habitat unit as measured with 50 m tape, used to calculate stream area. Wetted width is the distance from the edge of the water on one side of the main channel to the edge of the water on the opposite side of the main channel.

How to measure:
Use a meter tape to measure the wetted width of the stream in at least three locations. Average the measurements to obtain the average wetted width.

Where to measure:
paired sample habitat units

Bankfull Channel Width (m)

Definition:
Actual width of channel at bankfull elevation as measured with meter tape. Depending on channel type, bankfull may or may not be represented by the top of the banks. Use bankfull indicators to locate the top of the bankfull channel (Rosgen 1996).

How to measure:
Determine the location of bankfull water depth on both banks of the habitat unit and measure across the channel perpendicular to flow from bankfull to bankfull.

Where to measure:
paired sample riffles, runs, or cascades
Riparian Width (m)

Definition:
Width of the riparian area at an elevation of two times the maximum bankfull depth, measured for both left and right banks (left and right as oriented facing upstream). Maximum bankfull depth is the greatest vertical distance from the substrate to the top of the bankfull channel across a bankfull transect.

How to measure:
- Stretch a measuring tape across the top of the bankfull channel – this is your bankfull transect
- Use a wading rod to find the maximum bankfull depth
- Place the clinometer against the wading rod at two-times the maximum bankfull depth
- Using the clinometer to maintain a slope of zero degrees, site perpendicular to the channel to the intersection with the nearest landform. It may be necessary to site to an intermediate point, move the wading and clinometer, and site again if the tape measure is too short or the view is obstructed
- Measure the distance from the edge of the bankfull channel to the landform – do this separately for the left and right (as facing upstream) riparian areas

Note: if riparian width is more than 50 m, record 51 as the riparian width and note in ‘Comments’ that riparian width was longer than meter tape

Where to measure: paired sample riffles, runs, or cascades
Gradient (%)

Definition:
Change in vertical elevation per unit of horizontal distance of the water surface (Armantrout 1998)

How to measure:
Gradient is measured in riffles with a clinometer using the following steps:

- Observer stands at upstream end of riffle, recorder stands at downstream end of riffle
- Recorder sites upstream to the height of their eye on the observer using clinometer
- Record the **percent** slope, **not the degrees** (tip the clinometer all the way back to determine which side of the scale is percent)

The recorder should determine the height of their eye on the observer at the beginning of the inventory. Be certain that the observer and recorder are standing with their feet in the same position (preferably with feet at top of water surface) within the stream channel. If the observer is standing on top of a boulder and the recorder is standing in a depression, the measured gradient will be incorrect.

Where to measure: paired sample riffles, runs, or cascades

Water Temperature (C)

Definition:
Temperature of the water in degrees Celsius.

How to measure:
Place the thermometer in moving water in an area not exposed to direct sunlight. Leave the thermometer sit for at least three minutes, then record the water temperature in degrees Celsius.

Where to measure: paired sample riffles, runs, or cascades

Photo (ID#)

Definition:
Photograph of habitat unit or crossing feature.

How to measure:
Take photo facing upstream with observer holding wading rod in picture. Be sure to get entire width (and length if possible) of habitat unit or crossing feature in the photo.

Where to measure: paired sample riffles, runs, or cascades and any crossing features encountered
Features

Definition: Points on a stream that could potentially serve as landmarks, may be natural or manmade.

How to measure: Record the distance to the upstream end of all features and take a photograph of all crossing features.

Where to record: wherever found

<table>
<thead>
<tr>
<th>Channel Feature</th>
<th>Abbreviation</th>
<th>What to Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterfall(^1)</td>
<td>FALL</td>
<td>Distance, estimated height</td>
</tr>
<tr>
<td>Tributary</td>
<td>TRIB</td>
<td>Distance, average wetted width, into main channel on left or right (as facing upstream)</td>
</tr>
<tr>
<td>Side channel(^2)</td>
<td>SCH</td>
<td>Distance, average wetted width, whether it is flowing into or out of main channel on left or right (as facing upstream)</td>
</tr>
<tr>
<td>Braid(^3)</td>
<td>BRD</td>
<td>Distance at start and distance at end; continue with normal inventory up channel with greatest discharge</td>
</tr>
<tr>
<td>Seep (Spring)</td>
<td>SEEP</td>
<td>Distance, left or right bank (as facing upstream), size, coloration</td>
</tr>
<tr>
<td>Landslide</td>
<td>SLID</td>
<td>Distance, left or right bank (as facing upstream), estimated size</td>
</tr>
<tr>
<td>Other</td>
<td>OTR</td>
<td>Distance, description of feature, example: found water intake pipe going to house here; old burned out shack on side of stream; Big Gap campground on left; alligator slide here, etc.</td>
</tr>
</tbody>
</table>

\(^1\) must be vertical with water falling through air to be a waterfall and not a cascade, do not record unless >1m high
\(^2\) two channels, continue with normal inventory up channel with most volume
\(^3\) three or more channels intertwined, continue with normal inventory up channel with most volume

<table>
<thead>
<tr>
<th>Crossing Feature</th>
<th>Abbreviation</th>
<th>What to Record*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>BRG</td>
<td>Distance, width, height, road or trail name and type (gravel, paved, dirt, horse, ATV, etc.), photo</td>
</tr>
<tr>
<td>Ford</td>
<td>FORD</td>
<td>Distance, road or trail name and type (gravel, paved, dirt, etc.), photo</td>
</tr>
<tr>
<td>Dam</td>
<td>DAM</td>
<td>Distance, type, condition, estimated height, dam use, name of road or trail, if applicable; include beaver dams, photo</td>
</tr>
<tr>
<td>Culvert</td>
<td>V</td>
<td>Distance, road or trail name, type, # of outlets, diameter/width, height, material, perch (distance from top of water to bottom lip of culvert, natural substrate (present or absent through length), photo</td>
</tr>
</tbody>
</table>

* photograph all crossing features with person and wading rod for scale, record ‘Y’ in ‘Photo’ column

We cannot stress enough the importance of fully and accurately describing features. This means getting out a quadrangle map and finding road, trail, and tributary names and recording them in ‘Comments’ and taking the time to describe the location of features in relation to landmarks found on quadrangle maps.

Take photos of all crossing features!
Section 3: Wrapping Up

End the inventory where:
- Forest Service property ends
- Stream is dry for more than 500 m
- Stream channel is < 1.0 m wide for more than 500 m

Record the following in the Comments:
- Time and date
- Reason for ending the inventory
- Detailed written description of location using landmarks for reference
- **Be sure the header information is completed – GPS, etc**

When you return to home base:
- Immediately download the data and check file to be sure all data downloaded
- Check header information to be sure it is complete
- Save to the computer and create a backup copy
- Document any photographs
- If using paper, make a photocopy of the data and store in secure location
Section 4: Summary

Before starting:
- fill in header information

Record for every habitat unit:
- Unit Type
- Unit Number
- Distance
- Estimated Width
- Maximum Depth
- Average Depth
- Dominant Substrate
- Subdominant Substrate
- Percent Fines
- Large Wood

Record for every riffle, run, or cascade leading into a pool or glide:
- Riffle Crest Depth

Record for every paired sample pool:
- Measured Width

Record for every paired sample riffle:
- Measured Width
- Bankfull Channel Width
- Riparian Width (left and right)
- Gradient
- Rosgen Channel Type
- Water temperature
- Photograph

Record features and full feature descriptions wherever they are encountered.

Photograph all crossings!
Section 5: GPS Instructions

Garmin BVET Waypoint Labels:

Garmin BVET Waypoint Label Examples:
- S123 Start location of BVET survey
- E123 End location of BVET survey
- 123 Site identification number

How to Find a Waypoint on GPS:
- Turn Power On.
- On the main menu screen touch the Where To? icon with the magnifying glass.
- Touch the Waypoints icon with the red golf flag.
- At the bottom of the next screen touch the ABC pyramid button.
- Start typing in the name of the desired waypoint. Once the waypoint name is identified by the GPS it will list the waypoints associated with that waypoint name.
 - Note: Touch the left and right arrows at the bottom of the screen to move from letters to numbers to symbols. Touch the down arrow on the letters to get lowercase and up arrow to get back to uppercase.
- Touch the waypoint name you were looking for when the list pops up.
- To navigate to this location touch the big green Go button.

Changing Waypoints:
- To switch waypoints close the map screen by touching the X close button in the lower left corner of the screen.
- On the main menu screen touch the Where To? icon with the magnifying glass.
- Touch the Stop Navigation button and repeat the top process to get to a new waypoint.
Garmin GPS Oregon 400T Cheatsheet

Turn On
 • Press Power key, wait for GPS to boot

Turn Off
 • Press and hold Power key

Backlight Strength
 • Press and quickly release Power key, adjust with touchscreen options

Create New Waypoint
 1. To create a waypoint of your current position touch “Mark Waypoint”
 2. Touch “Save and Edit”, touch “Change Name”, type desired label, touch “Green Check Icon” to save

Calibrate compass
 1. Whenever batteries are removed you must calibrate the compass so the map orient correctly
 2. Touch “Setup”, touch “Heading”, touch “Press to Begin Compass Calibration”
 3. Touch “Start”, hold GPS level and rotate it twice on your palm

Data Fields
 1. To change the data fields on the map page touch “Map”
 2. Touch a data field at the top of the map, then select your desired data field

Calibrating the Touchscreen
 1. If the touchscreen buttons are not responding properly, recalibrate the touchscreen
 2. While the GPS is turned off, press and hold the power key for ~30 seconds
 3. Follow instructions on the screen until calibration is complete
Appendix: Field Guide, Equipment Checklist, Rosgen Worksheet

Record for every habitat unit:
- **Unit Type** – pool, riffle, run, cascade, glide, feature (see below)
- **Unit Number** – group pools & glides; group riffles, runs, cascades
- **Distance (m)** – at upstream end of unit
- **Estimated Width (m)** – visual estimate of average wetted width
- **Maximum Depth (cm)** – deepest spot in unit
- **Average Depth (cm)** – average depth of unit
- **Dominant Substrate (1-9)** – covers greatest amount of surface area in unit
- **Subdominant Substrate (1-9)** – covers 2nd most surface area in unit
- **Percent Fines (%)** – percent of bottom consisting of sand, silt, or clay
- **Large Wood (1-4, RW)** – count of dead and down wood in the bankfull channel

Record for every riffle, run, or cascade leading into a pool or glide:
- **Riffle Crest Depth (cm)** – deepest spot in hydraulic control between riffle type habitat and pool type habitat

Record for paired sample pools:
- **Measured Width (m)** – measurement of average wetted width

Record for paired sample riffles:
- **Measured Width (m)** – measurement of average wetted width
- **Channel Width (m)** – measurement of bankfull channel width
- **Riparian Width (m)** – L&R, measurement of floodplain
- **Gradient (%)** – clinometer measurement of riffle slope
- **Water Temperature (C)** – temperature of water in Celsius
- **Rosgen** – channel type classification
- **Photo (y or n)** – picture of habitat unit or crossing feature

Unit Types
- **Riffle (R)** – fast water, turbulent, gradient <12%; includes rapids, chutes, and sheets if gradient <12%
- **Cascade (C)** – fast water, turbulent, gradient ≥12%, includes sheets and chutes if gradient ≥12%
- **Run (RN)** – fast water, little to no turbulence, gradient <12%, flat bottom profile, deeper than riffles
- **Pool (P)** – slow water, may or may not be turbulent, gradient <1%, includes dammed, scour, and plunge pools
- **Glide (G)** – slow water, no surface turbulence, gradient <1%, shallow with little flow and flat bottom profile
- **Underground (UNGR)** – distance at upstream end, why dry
Features

- **Waterfall (FALL)** – distance, height
- **Tributary (TRIB)** – distance, width, in on L or R
- **Side Channel (SCH)** – distance, width, in or out on L or R
- **Braid (BRD)** – distance at downstream and upstream ends
- **Seep or Spring (SEEP)** – distance, on left or right, amount of flow
- **Landslide (SLID)** – distance, L or R, est. size and cause
- **Other (OTR)** – record distance, describe feature in comments

Crossing Features – photograph and record the following:
- **Bridge (BRG)** – distance, height, width, road or trail name & type
- **Dam (DAM)** – distance, type, est. height, road or trail name & type
- **Ford (FORD)** – distance, road or trail name & type
- **Culvert (V)** – distance, type (pipe, box, open box, arch, open arch), size, material, natural substrate, perch, road or trail name

Substrates

- **Organic Matter** – dead leaves detritus, etc., not living plants
- **Clay** – sticky, holds form when balled
- **Silt** – slick, does not hold form when balled
- **Sand** – >silt-2mm, gritty, doesn’t hold form
- **Small Gravel** – 3-16mm, sand to thumbnail
- **Large Gravel** – 17-64mm, thumbnail to fist
- **Cobble** – 65-256mm, fist to head
- **Boulder** – >256, > head
- **Bedrock** – solid parent material

Large Wood

- **#1** <5m long, 10-55cm diameter
- **#2** <5m long, >55cm diameter
- **#3** >5m long, 10-55cm diameter
- **#4** >5m long, >55cm diameter
- **RW** – rootwad, count separately from attached LW, record in comments, do not record wood <10cm diameter, <1m length

Rosgen Channel Types

<table>
<thead>
<tr>
<th>Rosgen Channel Types</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrenchment</td>
<td>< 1.4</td>
<td>1.4 – 2.2</td>
<td>> 2.2</td>
<td>n/a</td>
<td>> 2.2</td>
<td>< 1.4</td>
<td>< 1.4</td>
</tr>
<tr>
<td>W/D Ratio</td>
<td>< 12</td>
<td>> 12</td>
<td>> 12</td>
<td>> 40</td>
<td>< 12</td>
<td>> 12</td>
<td>< 12</td>
</tr>
<tr>
<td>Slope (%)</td>
<td>4 – 9.9</td>
<td>2 – 3.9</td>
<td>< 2</td>
<td>< 4</td>
<td>< 2</td>
<td>< 2</td>
<td>2 – 3.9</td>
</tr>
</tbody>
</table>

Measuring Riparian Width (paired fast water units only)

- Place clinometer against the wading rod at two times max bankfull depth
- Use the clinometer as a level – keep the slope at 0.0 – and site to the nearest landform perpendicular to the channel
- Measure the distance from the edge of the bankfull channel to the intersection with the landform
- Do this for both the left and right banks
- If riparian width in more than 50 m, record 51 as the riparian width and in ‘Comments’ note that riparian was > 50 m wide
End inventory
- End the inventory when the calculated sample distance has been inventoried.

Equipment Checklist

- hipchain
- extra string for hipchain
- wading rod
- 50 m tape measure
- clinometer
- thermometer
- datalogger
- GPS unit
- camera
- backpack
- pencils
- flagging
- markers
- waterproof backup datasheets
- clipboard
- BVET field guide on waterproof paper
- topographic maps
- water
- water filter
- lunch
- first aid kit
- radio/cell phone
- toilet paper
- felt bottom wading boots
- raingear
Rosgen Measurements

All measurements should be made across a transect in an area of uniform flow, specifically riffle or run sections with few irregularities in cross-sectional shape. **Avoid** areas influenced by culverts, bridges, tributaries, side-channels, etc.

- **What is the entrenchment ratio?**
 - Entrenchment ratio = flood prone width / bankfull width
 - Floodprone width = width at two-times maximum bankfull depth

- **What is the width/depth ratio?**
 - Width/depth ratio = bankfull width / average bankfull depth
 - Be sure to use same units of measure (centimeters) for width and depth
 - Measure bankfull depth (not water depth) at several locations across transect to obtain average bankfull depth

- **What is the gradient?**
 - Measure riffle to riffle slope (%) with clinometer
Rosgen Worksheet

A. Bankfull Channel Width (m) _____
B. Maximum Bankfull Depth (cm) _____ *2 = _____
C. Average Bankfull Depth (cm) _____
D. Right Riparian Width (m) _____
E. Left Riparian Width (m) _____
F. Gradient (%) _____

Entrenchment Ratio = \((A+D+E)/A\)

\((_____ + _____ + _____)/ _____ = _____

Width Depth Ratio = \((100*A)/C\)

\((100* _____)/ _____ = _____

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrench. ratio</td>
<td>< 1.4</td>
<td>1.4 – 2.2</td>
<td>> 2.2</td>
<td>n/a</td>
<td>> 2.2</td>
<td>< 1.4</td>
<td>< 1.4</td>
</tr>
<tr>
<td>W/D ratio</td>
<td>< 12</td>
<td>> 12</td>
<td>> 12</td>
<td>> 40</td>
<td>< 12</td>
<td>> 12</td>
<td>< 12</td>
</tr>
<tr>
<td>Gradient (%)</td>
<td>4 – 9.9</td>
<td>2 – 3.9</td>
<td>< 2</td>
<td>< 4</td>
<td>< 2</td>
<td>< 2</td>
<td>2 – 3.9</td>
</tr>
</tbody>
</table>

*these are the dominant ranges, values may be slightly outside these ranges
Appendix C: Field Methods for Macroinvertebrate Sampling
Macroinvertebrate Equipment List
- Mesh wash bucket
- Rinse bucket
- Squirt bottle
- Seine
- D-Frame nets
- PVC ¼ sq meter quadrates
- Tweezers
- Collection jars
- Sample labels
- Pencils
- Markers
- Ethyl alcohol

Macroinvertebrate Sampling Methods

1. Riffle Sample
 - Take four 0.25 m² samples from midriffle or the thalweg (path of deepest thread of water).
 - For each of the 4 samples, place a seine (600 μm mesh, one meter wide) in moderate to fast current in areas with gravel to cobble substrate. Place some rocks on the bottom edge of the seine to hold it on the channel bottom.
 - Dislodge benthos by vigorously disturbing 0.25 m² (20 x 20 in.) in front of the net (use 0.25 m² PCV quadrate to sample correct area). Large rocks should be hand washed into the net.
 - After each of the 4 samples is collected wash the contents of the net into a mesh wash bucket to prevent loss of inverts when collecting the next sample. All four samples are composited in the bucket.
 - Find a suitable location on the side of the stream, spread the seine out on the ground, and wash the contents of the bucket onto the seine. With tweezers methodically sort through the sample picking out the invertebrates and placing them in a sample jar containing ethyl alcohol.
 - The picking process can easily take an hour to complete; be patient and thorough. When complete be sure there is a sample label inside the jar as well as one on the outside.
 - This sample must be kept separate from all other subhabitat collections.

2. Multi-Habitat Sample
 A. Sweep Sample - Involves sampling a variety of non-riffle habitats with the aid of an 800 x 900 μm mesh D-frame dipnet. Each habitat is sampled in at least three (3) replicates, where possible.
 1) Undercut banks/root mats - sampled by placing a large rootwad into the D-frame dipnet and shaken vigorously. The contents are removed from the dipnet and placed into a mesh wash bucket. Note: if undercut banks are present in both run and pool areas, each is sampled separately with three replicates.
2) Marginal emergent vegetation (exclusive of *Justicia americana* beds) – sampled by thrusting (i.e., “jabbing”) the dipnet into the vegetation for ca. 1 m, and then sweeping through the area to collect dislodged organisms. Material is then rinsed in the wash bucket and any sticks, leaves and vegetation are thoroughly washed and inspected before discarding.

3) Bedrock or slab-rock habitats - sampled by placing the edge of the dipnet flush on the substrate, disturbing approximately 0.1 m² of area to dislodge attached organisms. Material is emptied into a wash bucket.

4) *Justicia americana* (water willow) beds - sampled by working the net through a 1 m section in a jabbing motion. The material is then emptied into a wash-bucket and any *J. americana* stems are thoroughly washed, inspected and discarded.

5) Leaf Packs - preferably “conditioned” (i.e., not new-fall material) where possible; samples are taken from a variety of locations (i.e., riffles, runs and pools) and placed into the wash-bucket. The material is thoroughly rinsed to dislodge organisms and then inspected and discarded.

B. Silt, sand, and fine gravel

1) Netting - a D-frame dipnet is used to collect sand and silt depositional areas by placing the net on the substrate and vigorously stirring the sediments in front of the net. An area of 0.1 m² is sampled for each replicate making sure, where possible, that replicates are taken from different depositional areas.

C. Aufwuchs sample - small invertebrates associated with this habitat are obtained by washing a small amount of rocks, sticks, leaves, filamentous algae and moss into a medium-sized bucket half filled with water. The material is then elutriated and sieved with the nitex sampler.

D. Rock Picking - invertebrates are picked from 15 rocks (large cobble-small boulder size; 5 each from riffle, run and pool). Selected rocks are washed in a bucket half filled with water, then carefully inspected to remove invertebrates with fine-tipped forceps.

E. Wood Sample - pieces of submerged wood, ranging from roughly 3 to 6 meters (10 to 20 linear feet) and ranging from 5–15 cm (2–6 inches) in diameter, are individually rinsed into the wash-bucket. Pieces of wood are inspected for burrowers and crevice dwellers. Large diameter, well-aged logs should be inspected and handpicked with fine-tipped forceps.
Macroinvertebrate Sampling Summary

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sampling Device</th>
<th>Habitat</th>
<th>Replicates (composited)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Riffle*</td>
<td>Kick Seine/Mesh bucket/PVC Sq.</td>
<td>Riffle</td>
<td>4 - 0.25 m²</td>
</tr>
<tr>
<td>2 Sweep - Undercut banks</td>
<td>Dipnet/Mesh Bucket</td>
<td>Undercut Banks/Roots</td>
<td>3</td>
</tr>
<tr>
<td>3 Sweep - Emergent vegetation</td>
<td>Dipnet/Mesh Bucket</td>
<td>Emergent Vegetation</td>
<td>3</td>
</tr>
<tr>
<td>4 Sweep - Bedrock</td>
<td>Dipnet/Mesh Bucket</td>
<td>Bedrock/Slabrock</td>
<td>3</td>
</tr>
<tr>
<td>5 Sweep - Justicia beds</td>
<td>Dipnet/Mesh Bucket</td>
<td>Justicia beds</td>
<td>3</td>
</tr>
<tr>
<td>6 Sweep - Leaf packs</td>
<td>Dipnet/Mesh Bucket</td>
<td>Riffle-Run-Pool</td>
<td>3</td>
</tr>
<tr>
<td>7 Silt, Sand, Fine Gravel</td>
<td>Dipnet/Mesh Bucket</td>
<td>Margins</td>
<td>3</td>
</tr>
<tr>
<td>8 Aufwuchs</td>
<td>Dipnet/Mesh Bucket</td>
<td>Riffle-Run-Pool</td>
<td>3</td>
</tr>
<tr>
<td>9 Rock Picking</td>
<td>Forceps</td>
<td>Riffle-Run-Pool</td>
<td>15 rocks (5-5-5)</td>
</tr>
<tr>
<td>10 Wood</td>
<td>Mesh Bucket</td>
<td>Riffle-Run-Pool</td>
<td>3-6 linear m</td>
</tr>
</tbody>
</table>

*Sample contents kept separate from other habitat samples.
Appendix D: Field Methods for Riffle Stability Index
Riffle Stability Index Field Methods

The Riffle Stability Index procedure is best applied to stream channels with gradients from 1.5 to 5 percent. The channel is best described as a Rosgen B-2, B-3, B-4 or F-2, F-3, F-4 type. Three riffles are measured within each uniform Rosgen reach. Each riffle selected for measurement should be representative or typical within the reach. An ideal riffle is located in a straight section of reach, has uniform depth in the cross-section, and is at a point of thalweg crossover. Flow is evenly distributed across the channel and is not concentrated toward either bank. For each riffle, field data are gathered to determine the distribution of particle sizes present. An estimate of the common large size of particle capable of movement at bankfull flow is obtained by sampling a nearby bar deposit.

1. Pebble Count - Particle Size Distribution on the Riffle

A particle size distribution is obtained on the riffle by a bed material sampling procedure called a "Wolman Pebble Count". A sample size of at least 200 is necessary for RSI. The sample points are identified by establishing a sampling grid over the riffle, with transects across the channel from bankfull to bankfull over the entire length of riffle. Samples are taken every foot along the transect. Thus, bankfull width in feet will equal the number of samples per transect. Dividing 200 by the number of samples per transect and rounding up will determine the number of transects needed. Spacing between transects is determined by dividing the length of riffle by the number of transects needed. For each sample, the intermediate axis of the particle is measured using a metric caliper, and is tallied by size class. For very large particles, count the same particle as many times as you encounter it. The cumulative percent finer is then calculated for each size class, and plotted on the graph.

2. Bar (Cobble) Count - Dominant Large Particles on a Bar

Measure 30 of the freshly moved dominant large particles residing on a bar or similar depositional feature to estimate the largest particle size transported at flows of bankfull and above. Freshness is evaluated by lack of growing vegetation and lack of embeddedness of the particles. The depositional feature must be in close proximity to the riffle being examined, and can include laterally attached bars, side bars, and central bars. The entire bar should be visually inspected to identify the dominant large size of particle present. If a bar deposit cannot be found, trained field personnel may select the large mobile particles from within the riffle. When this is done, a sample size of at least 20 is needed. For each of the particles, the intermediate axis is measured and recorded to the nearest millimeter. Calculate the arithmetic mean of the sample, and compare this with the plotted cumulative particle size distribution for the riffle. On the X axis, find the mean bar sample grain size. Go up to the cumulative particle size distribution, and read from the Y axis the percentile this represents. This percentile is the Riffle Stability Index.