Summary of Stream Inventories in the Red River Gorge, Daniel Boone National Forest, 2011

United States Department of Agriculture Forest Service
Southern Research Station
Center for Aquatic Technology Transfer
1710 Research Center Drive
Blacksburg, VA 24060-6349

C. Andrew Dolloff, Team Leader

Report prepared by:
Colin Krause and Craig Roghair
November 2011
Table of Contents

Introduction ... 2

Methods ... 2
 Site Selections and Reach Layout .. 2
 Habitat Inventory .. 2
 Fish Inventory .. 3
 Macroinvertebrate Inventory .. 3
 Pebble Count Inventory .. 3

Results .. 4
 Habitat Inventory .. 4
 Fish Inventory .. 4
 Macroinvertebrate Inventory .. 4
 Pebble Count Inventory .. 4

Discussion ... 5

Data Availability .. 5

Literature Cited .. 13

Appendix A: Field Methods for Stream Inventory ... 14
Appendix B: Field Methods for Habitat Inventory .. 19
Appendix C: Field Methods for Macroinvertebrate Sampling 47
Appendix D: Field Methods for Riffle Stability Index .. 51

List of Figures

Figure 1. Sample site locations .. 6

List of Tables

Table 1. Data collected at monitoring sites ... 7
Table 2. GPS coordinates .. 7
Table 3. Summary of BVET stream habitat attributes ... 8
Table 4. Stream area in pools and riffles ... 8
Table 5. Large wood per kilometer .. 9
Table 6. Dominant and subdominant substrate ... 9
Table 7. Total count of fish captured .. 10
Table 8. Riffle stability index results ... 12
Introduction

In spring 2011, the Daniel Boone National Forest (DBNF) requested assistance from the USDA Forest Service, Southern Research Station, Center for Aquatic Technology Transfer (CATT) with stream habitat, fish, and macroinvertebrate inventories at 7 sites within the Red River Gorge watershed protection plan area (Walker and Cotton 2011). The Red River Gorge contains some of the most remarkable scenery in the United States, and is often referred to as the ‘Grand Canyon’ of the east. As such, it attracts hundreds of thousands of visitors each year, putting stresses on the natural wonders found therein. In 2004, the DBNF entered into a “Limits of Acceptable Change” (LAC) process with stakeholders to identify problems such as erosion and pollution occurring in the Red River Gorge watershed protection plan area. Using sources identified in the LAC process, the DBNF implements Environmental Protection Agency (EPA) guidelines to reduce erosion, manage user-developed features, involve and educate the public, and monitor progress. To assess whether these actions reduce stream sediment and benefit aquatic species, both pre (2011) and post (2015) biological monitoring were scheduled at 24 stream sites. Seventeen of the sites are on private land and will be monitored by a consulting firm. The remaining 7 sites are on Forest Service managed lands and will be monitored by the DBNF. The biological pre-monitoring was conducted by the CATT on July 20-26, 2011 by 1 crew leader, 3 technicians, and 2 DBNF employees.

Methods

Site Selections and Reach Layout

The 24 sites were chosen because they are previously monitored locations (Walker and Cotton 2011). At the 7 sites located on Forest Service managed land, we measured the wetted width of 1 – 2 fast water (riffle or run) habitat units and calculated the average wetted width. If the average wetted width was less than or equal to 3.0 m or greater than or equal to 7.5 m, the sample reach length was 120 m or 300 m, respectively (Appendix A). In all other cases sample reach length was 40-times the average wetted width.

Habitat Inventory

Two-person crews performed abbreviated stream habitat inventories (Roghair and Nuckols 2005) based on the basinwide visual estimation technique (BVET) (Dolloff et al. 1993). For each habitat unit contained wholly or partially within the sample reach, the crew visually estimated or measured the following attributes:
When possible, the crew sub-sampled at least 3 fast water and 3 slow water units within each reach.

In addition, the crew noted stream features, including:
- Waterfalls
- Tributaries
- Side channels
- Braided channels
- Seeps (springs)
- Waterfalls
- Landslides
- Bridges
- Fords
- Dams
- Culverts

See Appendix A and B for detailed field methods.

Fish Inventory

A 4-person crew using a DC backpack electrofisher collected fish from the same stream reach inventoried for stream habitat (see above). The crew attempted to apply standard effort of approximately 1 sec/m² of wetted stream habitat, and recorded the following data:
- Species name
- Counts of adult, age-0, and voucher specimens
- Sample reach length, electrofishing time (sec), and voltage
- GPS coordinates of start and end location

See Appendix A for detailed field methods.

Macroinvertebrate Inventory

We collected macroinvertebrates using riffle sample and multi-habitat sample methods described by the Kentucky Division of Water (KDOW 2011). Macroinvertebrates were collected at least one day before fish sampling. See Appendix A and C for detailed field methods.

Pebble Count Inventory

Fish sampling crews conducted pebble counts (Wolman heel-to-toe steps protocol; Wolman, 1954) in riffle habitat units to characterize the substrate in sample reaches. Crew members measured the intermediate axis of a minimum of 200 pebbles per riffle as described in Bunte and Abt (2001) and

<table>
<thead>
<tr>
<th>All Habitat Units</th>
<th>Sub-Sample of Habitat Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of habitat</td>
<td>Bankfull channel width</td>
</tr>
<tr>
<td>Length and width</td>
<td>Channel gradient</td>
</tr>
<tr>
<td>Maximum and average depth</td>
<td>Water temperature</td>
</tr>
<tr>
<td>Riffle crest depth</td>
<td>Photographs</td>
</tr>
<tr>
<td>Dominant and subdominant substrate</td>
<td>GPS coordinates</td>
</tr>
<tr>
<td>Rosgen channel type (Rosgen, 1996)</td>
<td></td>
</tr>
<tr>
<td>Percent fines</td>
<td></td>
</tr>
<tr>
<td>Large wood counts</td>
<td></td>
</tr>
</tbody>
</table>
Kappesser (2002). In addition to pebble counts, bar counts were conducted by measuring the intermediate axis of 30 dominant large particles residing on a bar or similar depositional feature within the sample reach. See Appendix A and D for detailed field methods.

Results

In 2011 we completed macroinvertebrate, habitat, and fish inventories at 7 sites (Figure 1, Table 1). GPS coordinates for the downstream and upstream end of each inventoried reach are available in Table 2. These data can be used to describe stream condition on the DBNF and serve as a baseline for future comparisons.

Habitat Inventory

The sample site reaches were all wadable streams with mean average pool depths ranging from 30 to 95 cm, average bankfull channel widths from 5.6 to 17.9 m, channel gradient from 1 – 3%, and were classified as Rosgen channel types B, C, F, and G (Table 3). Site 3 and 7 had the highest average percent fines (i.e. streambed surface covered with sand, silt, or clay) in pools; 47% and 38% respectively (Table 3). The inventoried area of pools and riffles (Table 4) varied based on inventory length (Table 1) and wetted width (Table 3). The percentage of pool versus riffle habitat was relatively evenly distributed at sites 1 and 3 (Table 4). Sites 4, 6, and 7 had more pool habitat and sites 2 and 5 had more riffle habitat (Table 4). The quantity of large wood per kilometer at sites 5, 6, and 7 was over twice that at sites 1, 2, 3, and 4 (Table 5). The dominant and subdominant substrate in pools and riffles varied by site, but included clay, sand, small gravel, large gravel, cobble, boulder, and bedrock (Table 6).

Fish Inventory

We collected a total of 32 fish species among the 7 sites (Table 7). Species present at all 7 sites are banded sculpin, blacknose dace, and creek chub; species present at 6 out of 7 sites are fantail darter, orangethroat darter, and southern redbelly dace (Table 7).

Macroinvertebrate Inventory

The macroinvertebrate samples were given to the DBNF (Jon Walker, DBNF Forest Hydrologist) for identification.

Pebble Count Inventory

The riffle stability index (RSI) value was > 90 for sites 1, 2, 3, 4, and 5, and was 63 for site 6, and 51 for site 7 (Table 8).
Discussion

The data presented here are intended to provide information on the condition of streams within the Red River Gorge prior to the implementation of erosion control measures. The small number of sites sampled on the Forest makes it difficult to assess the biological communities with regards to physical habitat conditions. However, the data collected by the CATT at 7 sites on the Forest in combination with data collected at 17 sites outside the Forest should provide the context necessary to assess the effectiveness of the erosion control efforts. Post-implementation monitoring at these sites using similar methods will allow for examination of changes in the physical habitat and biological communities.

Successful implementation of an effective erosion control program will result in decreases in percent fines and shifts towards coarse substrates, which should cause detectible changes in biological communities. Fine sediments reduce interstitial habitat for benthic macroinvertebrates, decreasing their density and biomass (Henley et al. 2000) and impacting fish species that feed on them (Berkman and Rabeni 1987; Kemp et al. 2011). In addition, fine sediments can impair the reproductive success of fish requiring clean gravel for spawning (Sutherland et al. 2002). Shifts in biological communities away from generalists and towards species that require clean substrates would indicate successful implementation (Shields et al. 2007; Sutherland et al. 2002). Post-implementation monitoring is planned in 2015. However, there is often substantial lag time (years to decades) in the response of water quality, stream habitat, and biota to mitigation efforts (Meals et al. 2010). Monitoring beyond 2015 may be required to detect responses to the erosion control program.

Data Availability

Summer 2005-2011 habitat, fish, and pebble data are stored in a Microsoft Access database, which is stored at the CATT and an offsite backup (O:\RD\SRS\Site\BlacksburgVA\Admin\CATT Center for Aquatic Technology Transfer\National Forest System\ACCESS Databases), and a copy has been provided to the DBNF. We will support the migration of this data into the USFS database tool, Natural Resource Information System Aquatic Surveys (NRIS AqS), as needed. In the interim, we are working with the DBNF to develop custom queries and reports for the MS Access database. Queries already developed include stream width corrections (visually estimated vs. measured), stream area calculations, summary of fish captures, and summary of inventories. Jon Walker, DBNF Forest Hydrologist, received a copy of all data in electronic format. Past reports are available on the CATT website: www.srs.fs.usda.gov/catt.
Figure 1. Sample site locations within the Red River Gorge watershed protection plan area; Cumberland Ranger District, Daniel Boone National Forest, Kentucky.
Table 1. Data collected at monitoring sites within the Red River Gorge watershed protection plan area. Data were collected in July 2011, unless otherwise indicated (see asterisks and footnote).

<table>
<thead>
<tr>
<th>Site #</th>
<th>Stream Name</th>
<th>Topo Quad</th>
<th>Macro-inverts</th>
<th>BVET habitat (m)</th>
<th>Efish (sec)</th>
<th>Mussels</th>
<th>Crayfish</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indian Creek Frenchburg</td>
<td>collected</td>
<td>227</td>
<td>1,274</td>
<td>none</td>
<td>present</td>
<td>a.k.a. site DOW04042017</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Indian Creek Slade</td>
<td>collected</td>
<td>344</td>
<td>2,330</td>
<td>none</td>
<td>none</td>
<td>a.k.a. site DBF04015</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Little East Fork Frenchburg</td>
<td>collected*</td>
<td>137</td>
<td>471</td>
<td>none</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>East Fork Indian Creek Frenchburg</td>
<td>collected</td>
<td>332</td>
<td>2,280</td>
<td>none</td>
<td>present</td>
<td>a.k.a. site DBF04042714</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Edwards Branch Slade</td>
<td>collected*</td>
<td>151</td>
<td>699</td>
<td>none</td>
<td>present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Clifty Creek Pomeroyton</td>
<td>collected</td>
<td>252</td>
<td>1,402</td>
<td>none</td>
<td>present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Gladie Creek Pomeroyton</td>
<td>collected</td>
<td>312</td>
<td>1,760</td>
<td>none</td>
<td>present</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 1,755

*Collected by DBNF personnel on May 12th, 2011.

Table 2. GPS coordinates recorded at the downstream (start) and upstream (end) extent of stream habitat and fish inventory reaches within the Red River Gorge watershed protection plan area, July 2011.

<table>
<thead>
<tr>
<th>Site #</th>
<th>Stream Name</th>
<th>Downstream Inventory Start</th>
<th>Upstream Inventory End</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indian Creek</td>
<td>17 S 265076 4199080</td>
<td>17 S 264963 4199257</td>
</tr>
<tr>
<td>2</td>
<td>Indian Creek</td>
<td>17 S 263651 4192579</td>
<td>17 S 263701 4192868</td>
</tr>
<tr>
<td>3</td>
<td>Little East Fork</td>
<td>17 S 267206 4196360</td>
<td>17 S 267314 4196334</td>
</tr>
<tr>
<td>4</td>
<td>East Fork Indian Creek</td>
<td>17 S 267471 4197565</td>
<td>17 S 267655 4197801</td>
</tr>
<tr>
<td>5</td>
<td>Edwards Branch</td>
<td>17 S 265831 4191734</td>
<td>17 S 265952 4191785</td>
</tr>
<tr>
<td>6</td>
<td>Clifty Creek</td>
<td>17 S 275224 4189109</td>
<td>17 S 275451 4189106</td>
</tr>
<tr>
<td>7</td>
<td>Gladie Creek</td>
<td>17 S 273893 4194117</td>
<td>17 S 274009 4193912</td>
</tr>
</tbody>
</table>
Table 3. Summary of BVET stream habitat attributes collected within the Red River Gorge watershed protection plan area, July 2011.

<table>
<thead>
<tr>
<th>Site #</th>
<th>Stream Name</th>
<th>Mean Avg. Depth (cm)</th>
<th>Mean Max. Depth (cm)</th>
<th>Mean Residual Depth (cm)</th>
<th>Avg. Wetted Width (m)</th>
<th>Avg. Bankfull Channel Width (m)</th>
<th>Avg. % Fines</th>
<th>Avg. Gradient (%)</th>
<th>Avg. Water Temp.</th>
<th>Avg. Wetted Width (m)</th>
<th>Avg. Bankfull Channel Width (m)</th>
<th>Rosgen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indian Creek</td>
<td>36</td>
<td>16</td>
<td>60</td>
<td>28</td>
<td>14</td>
<td>5.8</td>
<td>5.5</td>
<td>8.8</td>
<td>14</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Indian Creek</td>
<td>65</td>
<td>27</td>
<td>105</td>
<td>45</td>
<td>23</td>
<td>11.6</td>
<td>9.7</td>
<td>17.9</td>
<td>22</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Litte East Fork</td>
<td>47</td>
<td>18</td>
<td>71</td>
<td>29</td>
<td>14</td>
<td>3.2</td>
<td>4.1</td>
<td>5.6</td>
<td>47</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>East Fork Indian Cr</td>
<td>30</td>
<td>23</td>
<td>50</td>
<td>39</td>
<td>15</td>
<td>9.2</td>
<td>7.0</td>
<td>9.8</td>
<td>25</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Edwards Branch</td>
<td>45</td>
<td>13</td>
<td>64</td>
<td>31</td>
<td>15</td>
<td>3.3</td>
<td>4.0</td>
<td>6.4</td>
<td>14</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Clifty Creek</td>
<td>78</td>
<td>22</td>
<td>114</td>
<td>33</td>
<td>20</td>
<td>9.5</td>
<td>5.6</td>
<td>11.6</td>
<td>26</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Gladie Creek</td>
<td>95</td>
<td>23</td>
<td>141</td>
<td>43</td>
<td>24</td>
<td>10.9</td>
<td>6.3</td>
<td>15.4</td>
<td>38</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4. Stream area in pools (includes glides), and riffles (includes runs and cascades), as observed during BVET habitat inventories within the Red River Gorge watershed protection plan area, July 2011.

<table>
<thead>
<tr>
<th>Site #</th>
<th>Stream Name</th>
<th>Pool Area (m²)</th>
<th>Riffle Area (m²)</th>
<th>Total Area (m²)</th>
<th>% Pool Area</th>
<th>% Riffle Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indian Creek</td>
<td>733</td>
<td>639</td>
<td>1,372</td>
<td>53%</td>
<td>47%</td>
</tr>
<tr>
<td>2</td>
<td>Indian Creek</td>
<td>942</td>
<td>1,924</td>
<td>2,866</td>
<td>33%</td>
<td>67%</td>
</tr>
<tr>
<td>3</td>
<td>Litte East Fork</td>
<td>241</td>
<td>223</td>
<td>464</td>
<td>52%</td>
<td>48%</td>
</tr>
<tr>
<td>4</td>
<td>East Fork Indian Creek</td>
<td>1,765</td>
<td>1,095</td>
<td>2,859</td>
<td>62%</td>
<td>38%</td>
</tr>
<tr>
<td>5</td>
<td>Edwards Branch</td>
<td>150</td>
<td>420</td>
<td>570</td>
<td>26%</td>
<td>74%</td>
</tr>
<tr>
<td>6</td>
<td>Clifty Creek</td>
<td>1,771</td>
<td>529</td>
<td>2,300</td>
<td>77%</td>
<td>23%</td>
</tr>
<tr>
<td>7</td>
<td>Gladie Creek</td>
<td>1,756</td>
<td>916</td>
<td>2,672</td>
<td>66%</td>
<td>34%</td>
</tr>
</tbody>
</table>
Table 5. Large wood per kilometer observed during BVET habitat inventories within the Red River Gorge watershed protection plan area, July 2011 (see Appendix B for large wood size classes).

<table>
<thead>
<tr>
<th>Site #</th>
<th>Stream Name</th>
<th>LW1/ km</th>
<th>LW2/ km</th>
<th>LW3/ km</th>
<th>LW4/ km</th>
<th>RW/ km</th>
<th>Total LW/km</th>
<th>LW1 n</th>
<th>LW2 n</th>
<th>LW3 n</th>
<th>LW4 n</th>
<th>RW n</th>
<th>Total LW n</th>
<th>Inventory Distance (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indian Creek</td>
<td>26.4</td>
<td>0.0</td>
<td>4.4</td>
<td>0.0</td>
<td>13.2</td>
<td>44.1</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>0.23</td>
</tr>
<tr>
<td>2</td>
<td>Indian Creek</td>
<td>20.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>20.3</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0.34</td>
</tr>
<tr>
<td>3</td>
<td>Little East Fork</td>
<td>0.0</td>
<td>0.0</td>
<td>36.5</td>
<td>0.0</td>
<td>14.6</td>
<td>51.1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>0.14</td>
</tr>
<tr>
<td>4</td>
<td>East Fork Indian Creek</td>
<td>30.1</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>6.0</td>
<td>39.2</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>13</td>
<td>0.33</td>
</tr>
<tr>
<td>5</td>
<td>Edwards Branch</td>
<td>79.5</td>
<td>0.0</td>
<td>19.9</td>
<td>0.0</td>
<td>19.9</td>
<td>119.2</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>18</td>
<td>0.15</td>
</tr>
<tr>
<td>6</td>
<td>Clifty Creek</td>
<td>103.2</td>
<td>0.0</td>
<td>43.7</td>
<td>0.0</td>
<td>23.8</td>
<td>170.6</td>
<td>26</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>6</td>
<td>43</td>
<td>0.25</td>
</tr>
<tr>
<td>7</td>
<td>Gladie Creek</td>
<td>60.9</td>
<td>0.0</td>
<td>51.3</td>
<td>0.0</td>
<td>0.0</td>
<td>112.2</td>
<td>19</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Table 6. Dominant and subdominant substrate types observed during BVET habitat inventories within the Red River Gorge watershed protection plan area, July 2011 (see Appendix B for substrate class descriptions). The first number in each pair is for dominant substrate, the second for subdominant substrate. For example, in the case of Site 1 pools, there was 1 pool with dominant substrate of small gravel, and 4 pools with subdominant substrate of small gravel.

<table>
<thead>
<tr>
<th>Substrate Size Class</th>
<th>Site 1: Indian Cr.</th>
<th>Site 2: Indian Cr.</th>
<th>Site 3: Little E. Fk.</th>
<th>Site 4: E. Fk. Indian</th>
<th>Site 5: Edwards Br.</th>
<th>Site 6: Clifty Cr.</th>
<th>Site 7: Gladie Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pools</td>
<td>Pools</td>
<td>Pools</td>
<td>Pools</td>
<td>Pools</td>
<td>Pools</td>
<td>Pools</td>
</tr>
<tr>
<td>Organic matter</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Clay</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Silt</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Sand</td>
<td>0,0</td>
<td>0,0</td>
<td>3,0</td>
<td>2,0</td>
<td>0,3</td>
<td>0,0</td>
<td>3,1</td>
</tr>
<tr>
<td>Small gravel</td>
<td>1,4</td>
<td>0,2</td>
<td>0,2</td>
<td>1,2</td>
<td>3,1</td>
<td>0,2</td>
<td>0,3</td>
</tr>
<tr>
<td>Large gravel</td>
<td>5,1</td>
<td>4,2</td>
<td>0,1</td>
<td>1,1</td>
<td>4,0</td>
<td>2,1</td>
<td>3,3</td>
</tr>
<tr>
<td>Cobble</td>
<td>0,1</td>
<td>2,2</td>
<td>0,0</td>
<td>0,0</td>
<td>1,0</td>
<td>3,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Boulder</td>
<td>0,0</td>
<td>0,1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,2</td>
<td>1,4</td>
</tr>
<tr>
<td>Bedrock</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,1</td>
<td>2,1</td>
</tr>
</tbody>
</table>
Table 7. Total count (adult & age-0) of fish captured at each sample site within the Red River Gorge watershed protection plan area, July 2011.

<table>
<thead>
<tr>
<th>Family</th>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Site 1: Indian Cr.</th>
<th>Site 2: Indian Cr.</th>
<th>Site 3: Little E. Fk.</th>
<th>Site 4: E. Fk. Indian Cr.</th>
<th>Site 5: Edwards Br.</th>
<th>Site 6: Clifty Cr.</th>
<th>Site 7: Gladie Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catostomidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catostomus commersoni</td>
<td>White sucker</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hypentelium nigricans</td>
<td>Northern hog sucker</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Centrarchidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambloplites rupestris</td>
<td>Rock bass</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lepomis cyanellus</td>
<td>Green sunfish</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lepomis macrochirus</td>
<td>Bluegill</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lepomis megalotis</td>
<td>Longear sunfish</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Micropterus salmoides</td>
<td>Largemouth bass</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cottidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cottus carolinae</td>
<td>Banded sculpin</td>
<td>25</td>
<td>8</td>
<td>2</td>
<td>51</td>
<td>2</td>
<td>3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Cyprinidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campostoma anomalum</td>
<td>Central stoneroller</td>
<td>30</td>
<td>96</td>
<td>0</td>
<td>70</td>
<td>0</td>
<td>16</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Clinostomus funduloides</td>
<td>Rosyside dace</td>
<td>7</td>
<td>0</td>
<td>17</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Luxilus chrysocephalus</td>
<td>Striped shiner</td>
<td>0</td>
<td>58</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Notropis atherinoides</td>
<td>Emerald shiner</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Notropis boops</td>
<td>Bigeye shiner</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Notropis buccatus</td>
<td>Silverjaw minnow</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Notropis photogenis</td>
<td>Silver shiner</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Notropis volucellus</td>
<td>Mimic shiner</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Phenacobius mirabilis</td>
<td>Suckermouth minnow</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Phoxinus erythrogaster</td>
<td>Southern redbelly dace</td>
<td>13</td>
<td>0</td>
<td>22</td>
<td>93</td>
<td>16</td>
<td>5</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Pimephales notatus</td>
<td>Bluntnose minnow</td>
<td>2</td>
<td>63</td>
<td>25</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Rhinichthys atratulus</td>
<td>Blacknose dace</td>
<td>5</td>
<td>3</td>
<td>20</td>
<td>73</td>
<td>17</td>
<td>14</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Semotilus atromaculatus</td>
<td>Creek chub</td>
<td>42</td>
<td>31</td>
<td>30</td>
<td>157</td>
<td>49</td>
<td>35</td>
<td>87</td>
<td></td>
</tr>
</tbody>
</table>
Table 7 Continued.

<table>
<thead>
<tr>
<th>Family</th>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Site 1: Indian Cr.</th>
<th>Site 2: Indian Cr.</th>
<th>Site 3: Little E. Fk.</th>
<th>Site 4: E. Fk. Indian Cr.</th>
<th>Site 5: Edwards Br.</th>
<th>Site 6: Clifty Cr.</th>
<th>Site 7: Gladie Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundulidae</td>
<td>Fundulus catenatus</td>
<td>Northern studfish</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ictaluridae</td>
<td>Noturus flavus</td>
<td>Stonecat</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Noturus miurus</td>
<td>Brindled madtom</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percidae</td>
<td>Etheostoma blennioides</td>
<td>Greenside darter</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Etheostoma caeruleum</td>
<td>Rainbow darter</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Etheostoma flabellare</td>
<td>Fantail darter</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>25</td>
<td>0</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Etheostoma nigrum</td>
<td>Johnny darter</td>
<td>3</td>
<td>25</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Etheostoma rufilineatum</td>
<td>Redline darter</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Etheostoma spectabile</td>
<td>Orangethroat darter</td>
<td>14</td>
<td>53</td>
<td>9</td>
<td>33</td>
<td>0</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Percina maculata</td>
<td>Blackside darter</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Petromyzontidae</td>
<td>Lampetra appendix</td>
<td>American brook lamprey</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 8. Riffle stability index results (Kappesser 2002), based on pebble count data collected within the Red River Gorge watershed protection plan area, July 2011.

<table>
<thead>
<tr>
<th>Site #</th>
<th>Stream Name</th>
<th>Riffle Stability Index</th>
<th>Bar Sample Geometric Mean</th>
<th>Relative Bed Stability</th>
<th>Log of Relative Bed Stability</th>
<th>Median Particle Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indian Creek</td>
<td>90.8</td>
<td>148.5</td>
<td>0.38</td>
<td>-0.42</td>
<td>32 56 92 112</td>
</tr>
<tr>
<td>2</td>
<td>Indian Creek</td>
<td>94.3</td>
<td>110.0</td>
<td>NA*</td>
<td>NA*</td>
<td>44 58</td>
</tr>
<tr>
<td>3</td>
<td>Little East Fork</td>
<td>94.1</td>
<td>166.7</td>
<td>0.31</td>
<td>-0.51</td>
<td>20 46 82 102</td>
</tr>
<tr>
<td>4</td>
<td>East Fork Indian Creek</td>
<td>93.8</td>
<td>143.1</td>
<td>0.32</td>
<td>-0.49</td>
<td>20 46 82 102</td>
</tr>
<tr>
<td>5</td>
<td>Edwards Branch</td>
<td>91.9</td>
<td>179.4</td>
<td>0.32</td>
<td>-0.49</td>
<td>NA** 58 100 118</td>
</tr>
<tr>
<td>6</td>
<td>Clifty Creek</td>
<td>63.4</td>
<td>149.8</td>
<td>0.68</td>
<td>-0.17</td>
<td>60 102 190 260</td>
</tr>
<tr>
<td>7</td>
<td>Gladie Creek</td>
<td>50.5</td>
<td>145.2</td>
<td>0.90</td>
<td>-0.05</td>
<td>44 130 1024 1024</td>
</tr>
</tbody>
</table>

*Could not be calculated because the 0-2 mm substrate size-class comprised >50% of the sample.

**Could not be calculated because the 0-2 mm substrate size-class comprised >25% of the sample.
Literature Cited

Appendix A: Field Methods for Stream Inventory
Sampling Strategy

Day 1 – Macroinvertebrate collection & BVET Inventory
- All crew to first site to learn site documentation, reach layout, and macroinvertebrate and habitat sampling methods
- While 2 crew conduct the BVET inventory and reach layout, 2 or more other crew can collect macroinvertebrates
- Split into several crews (depending on crew size) to visit and document other sites, layout reaches, and sample macroinvertebrates and habitat

Day 2 – Efish & Pebble Counts
- Perform efish, pebble, and bar-count sampling at sites visited on day 1
- If crew is large enough, crew can split so that two crew are continuing with site documentation, reach layout, macroinvertebrate, and habitat sampling methods

Day 3
- Continue with approach from day 2, allowing at least 1 day between macroinvertebrate and fish sampling
- If fish sampling crew catches up with layout crew, then take a day to split into several layout crews as during day 1
- When layout crew finishes all sites they can rejoin fish sampling crew

This approach should maximize crew efficiency and prevent biases associated with sampling fish and macroinvertebrates within the same reach in the same day.

Site Documentation

Objective - Record location and description of site for reporting purposes

Methods
- Directions to site
 - Record roads taken to parking area
 - Record trails walked to site
 - Document route to site on quadrangle map
- GPS
 - Record GPS coordinates at start and end of reach
- Photos
 - Take digital photo from downstream end looking up, upstream end looking down
 - Photograph any pertinent features within the reach that may influence habitat and fauna, example, road or trail crossings, erosion, etc.
- Written description
 - Record comments on land use in the reach area, for example private land with mowed lawns, all forested, pasture lands, etc.
 - Record comments on other features that may be influencing stream conditions
Reach Layout

Objective - Use consistent method to lay out reach for fish and macroinvertebrate sampling

Methods

- Locate 1 – 2 riffles or runs and determine the average wetted width by making several measurements and computing the average. Measure width perpendicular to thalweg.
 - If the average wetted width is less than or equal to 3.0 m, then the reach length will be 120 m
 - If the average wetted width is greater than or equal to 7.5 m, then the reach length will be 300 m
 - If the average wetted width is between 3.0 and 7.5 m, then reach length is 40-times the average wetted width, example: average wetted width = 5 m; reach length = 5 x 40 = 200m

- Hang a double orange flag at the downstream end of the reach. Attach topofil from a hipchain and walk to the midpoint of the reach, hang a single orange flag, then continue to the end of the reach and hang another single orange flag (hanging the flags to layout the reach can be done while performing the BVET inventory)

- Record the average wetted width and reach length on the datasheet

- Reaches will not be moved to avoid road or trail crossings – moving reaches violated the assumptions of the stratified random sample design and invalidates statistical analysis. Document these features fully with photos and written descriptions

- Always begin reaches at the downstream end of a defined habitat unit, end points should be at the exact distance as described above

- In large streams make sure the reach includes all of a fast water habitat unit and all of a slow water habitat unit

Habitat Inventory (BVET)

Objective – Characterize stream habitat attribute within the sample reach.

Methods

- Collect attribute as described in Section 2 of Roghair and Nuckols (2005) (Appendix B)

- Increase frequency of paired (sub-) samples to include at least 3 fast and 3 slow water units within each reach
 - Where less than 3 fast or slow occur, sub-sample all units

- Start and end data collection at habitat unit breaks
 - This may extend habitat data collection slightly beyond end of sample reach (however, still hang reach-end flag at calculated distance, not at the upper end of habitat unit)
Macroinvertebrates Inventory

Objective - Collect assemblage sample

Methods
- Using D-frame nets and a seine collect macroinvertebrates using the riffle sample and multi-habitat sample methods described by KDO (2011)
- Where possible, keep macroinvertebrate samples within designated reaches. If this is not possible be sure to indicate on datasheet.

Electrofishing Inventory

Objective - Determine relative abundance and determine catch-per-unit-effort (CPUE). Note: we are not attempting to estimate population size or density for individual species, only assessing the fish assemblage

Methods (based on sampling strategies discussed and approved by R8 and SRS personnel in 3/2005)
- Electrofishing starts in same location as habitat inventory
- Electrofishing ends at location designated in reach layout process
 - Habitat inventory may extend beyond end of designated reach
 - DO NOT extend electrofishing sample beyond end of designated reach
- Single-pass DC backpack electrofishing
- One shocker, 3 netters (a net on the probe can be the 3rd net)
- No blocknets
- Electrofishing effort will be equal to 1.0 seconds for each 1.0 m² of wetted area
 - note: this will standardize our effort and remove the potentially confounding effect of changes in wetted width relative to the bankfull channel width in wet or dry years
 - derived Warren et al. data on electrofishing effort in MS streams
- Fish will be counted and released at the site, except for a voucher specimen for each species; endangered species lists will be reviewed before sampling
- Record age-0 fish and all fish older than age-0 separately for each species
- Keep all relic mussel shells encountered
- Record number of crayfish captured (don’t actively net crayfish, but bucket any that end up in the net). If also vouchering fish then keep a couple crayfish specimens (ideally Form I & II males)
Pebble Count Inventory

Objective - Determine the riffle stability index (RSI), bar sample geometric mean, and median particle sizes.

Methods
- Pebble count data is collected using methods modified from those in Kappesser (2002) to characterize the substrate composition of sample reaches.
- Pebble counts are performed in riffles designated for electrofishing by walking transects perpendicular to the flow within the bankfull channel (Harrelson et al. 1994).
- Walk the transect beginning at the edge of the bankfull channel on one side of the stream and walk heel-to-toe across the stream channel to the opposite bank.
- At each step pick up the pebble at the tip of your toe and measure its intermediate axis with a ruler to the nearest millimeter.
- For very large particles, the same particle is counted as many times it is encountered.
- These procedures are repeated until at least 200 measurements are recorded; Transects are not terminated until the opposite bank is reached even if this results in more than 200 measurements.
- Transects are distributed throughout the riffle; If detritus, LW, or other organic materials are encountered the rock substrate found directly below them is sampled.
- For the bar sample, measure 30 freshly moved dominant large particles residing on a bar or similar depositional feature to estimate the largest particle size transported at flows of bankfull and above; Freshness is evaluated by lack of growing vegetation and lack of embeddedness of the particles.
- The depositional feature must be in close proximity to the riffle being examined, and can include laterally attached bars, side bars, and central bars; The entire bar should be visually inspected to identify the dominant large size of particle present; If a bar deposit cannot be found, trained field personnel may select the large mobile particles from within the riffle; For each particle, measure the intermediate axis to the nearest millimeter.

Appendix B: Field Methods for Habitat Inventory
Guide to Stream Habitat Characterization using the BVET Methodology in the Daniel Boone National Forest, KY

Prepared by:

United States Department of Agriculture Forest Service
Southern Research Station
Center for Aquatic Technology Transfer (CATT)
1710 Ramble Rd.
Blacksburg, VA 24060-6349

C. Andrew Dolloff, Team Leader

Manual Revised - June 2011
Table of Contents

Introduction ... 2
References cited in this manual: .. 23
Outline of BVET Habitat Inventory ... 24

Section 1: Getting Started .. 25
 Equipment List .. 25
 Duties .. 25
 Header Information ... 26
 Starting the Inventory ... 26

Section 2: Stream Attributes .. 27
 Unit Type (see abbreviations) .. 27
 Unit Number (#) ... 27
 Distance (m) ... 28
 Estimated Width (m) ... 29
 Maximum and Average Depth (cm) .. 30
 Gradient (%) .. 30
 Riparian Width (m) ... 30
 Dominant and Subdominant Substrate (1-9) ... 31
 Percent Fines (%) .. 31
 Large Wood (1-4 and rootwad) ... 32
 Actual Width (m) .. 32
 Bankfull Channel Width (m) .. 33
 Riparian Width (m) ... 33
 Gradient (%) .. 33
 Water Temperature (C) .. 33
 Photo (ID#) .. 34
 Features ... 34

Section 3: Wrapping Up ... 38

Section 4: Summary ... 39

Section 5: GPS Instructions .. 40
 Garmin BVET Waypoint Labels: ... 40
 How to Find a Waypoint on GPS: .. 40
 Changing Waypoints: .. 40
 Garmin GPS Oregon 400T Cheatsheet ... 41

Appendix: Field Guide, Equipment Checklist, Rosgen Worksheet ... 42
 Unit Types .. 42
 Features ... 43
 Substrates .. 43
 Large Wood .. 43
 Rosgen Channel Types ... 43
 Measuring Riparian Width (paired fast-water units only) .. 44
 End inventory .. 44
 Equipment Checklist .. 44
 Rosgen Measurements .. 45
 Rosgen Worksheet ... 46
Introduction

The Basinwide Visual Estimation Technique (BVET) is a versatile tool used to assess streamwide habitat conditions in wadeable size streams and rivers. A crew of two individuals performs the inventory using two-stage visual estimation techniques described in Hankin and Reeves (1988) and Dolloff et al. (1993). In its most basic form the BVET combines visual estimates with actual measurements to provide a calibrated estimate of stream area with confidence intervals, however the crew may inventory any number of other habitat attributes as they walk the length of the stream. Experienced crews can inventory an average of 2-3 km per day, but this will vary depending on stream size and the number of stream attributes inventoried.

Before a crew begins a BVET inventory they must receive adequate training, both in the classroom and in the field. Estimating and measuring a large number of habitat attributes can confuse and overwhelm an inexperienced crew. Individuals must have an understanding of the basic concepts behind the BVET and be familiar with habitat attributes before they can effectively and efficiently perform an inventory.

In summer 2004, resource managers on the Daniel Boone National Forest (DBNF) requested that the USFS Center for Aquatic Technology Transfer (CATT) implement modified BVET inventories to inventory stream reaches previously inventoried in the 1990’s. The 1990’s inventories followed methods detailed in the ‘Daniel Boone National Forest Stream Inventory Work Plan and Sampling Techniques Manual’, which were similar in nature to the BVET habitat inventory. After discussion with resource managers from the DBNF, we scaled down the original protocol, eliminating several attributes and modifying others to maximize inventory efficiency during our limited time on the Forest. In summer 2005 the DBNF opted to use identical BVET methods as National Forests in Virginia and North Carolina, which are only slightly different from methods used in Kentucky in 2004.

This document was developed to serve as a guide for classroom and field instructions specific to the ONF BVET habitat inventory and to provide a post-training reference for field crews. It includes an overview of the BVET inventory, defines habitat attributes, instructs how and when to measure attributes, and provides reference sheets for use in the field. Each trainee should receive a copy of this manual and is encouraged to take notes in the spaces provided.

We used an abbreviated version of the BVET to sample habitat within sample reaches only.Paired samples were collected more frequently then described here because reaches were short. Stream attributes were collected as described in Section 2.
References cited in this manual:

Outline of BVET Habitat Inventory

1. Enter ‘Header’ information on the data sheet: ‘Header’ information includes date, stream, start location, crew, etc. and is vitally important to record for future reference.

2. Enter downstream of the starting point, then move upstream and begin the inventory. Tie off the hipchain, proceed upstream to the starting point, reset the hipchain to zero, and proceed upstream estimating parameters and recording data in every habitat unit.

3. At the paired sample units perform visual estimates, then perform measurements. Pair a minimum of 3 fast and 3 slow-water units; pair more if possible.

4. Progress upstream estimating attributes for every unit until the next paired sample unit is reached, then repeat step 4.

The crew should also take care to record roads, trails, tributaries, dams, waterfalls, road crossing types, riparian features (wildlife openings, trails, campsites, roads, timber harvest, etc.), and other pertinent stream features as they progress upstream. Be sure to record hipchain distances when noting such features. Some features may also require a picture number to be associated with them.

The following sections describe the BVET habitat inventory in detail:

- **Section 1**: Getting Started – equipment, header info, random numbers, starting the inventory
- **Section 2**: Habitat Attributes – definitions, how to estimate or measure, when to record
- **Section 3**: Wrapping Up – what to do when the inventory is completed
- **Section 4**: Summary
- **Section 5**: GPS Instructions
- **Appendix**: field guide, random number tables, equipment checklist
Section 1: Getting Started

Equipment List

- Hipchain
- Extra string for hipchain
- Wading rod
- 50 m tape measure
- Clinometer
- Datalogger
- Waterproof backup datasheets
- Thermometer
- GPS unit
- Topographic map w/NHD_ID
- Cell Phone
- First Aid Kit
- Rain Gear (optional)
- Camera
- Backpack
- Pencils
- Flagging
- Markers
- Clipoard
- BVET field guide on waterproof paper
- Felt bottom wading boots or waders
- Water
- Water Filter
- Toilet Paper

The BVET crew consists of two individuals, the ‘observer’ and the ‘recorder’. The observer wears the hipchain and carries the wading rod. The recorder wears the data logger and carries other equipment in the backpack. The duties of each individual are listed below.

Duties

<table>
<thead>
<tr>
<th>Observer</th>
<th>Recorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designate habitat units</td>
<td>Locate changes in NHD_ID</td>
</tr>
<tr>
<td>Measure distance</td>
<td>Record data</td>
</tr>
<tr>
<td>Estimate width</td>
<td>Determine paired sample location</td>
</tr>
<tr>
<td>Estimate depths</td>
<td>Classify and count Large Wood (LW)</td>
</tr>
<tr>
<td>Classify substrates</td>
<td>Photo-documentation</td>
</tr>
<tr>
<td>Locate features</td>
<td>Document features</td>
</tr>
<tr>
<td>Estimate percent fines</td>
<td>GPS-documentation</td>
</tr>
</tbody>
</table>

Both crew members are needed to measure actual widths, channel widths, riparian areas, gradient, and water temperature at designated units. Although the crew has assigned duties, they should not hesitate to consult with each other if they have questions or feel that a mistake may have been made. Working as a team will provide the best possible results.
Header Information

Header information is **vitaly important** for future reference. Take the time to record all categories completely and accurately.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Name</td>
<td>Full name of stream</td>
</tr>
<tr>
<td>District</td>
<td>National Forest District name</td>
</tr>
<tr>
<td>Quad</td>
<td>USGS 1:24,000 quadrangle name</td>
</tr>
<tr>
<td>Date</td>
<td>Record date(s) of inventory</td>
</tr>
<tr>
<td>Recorder</td>
<td>Full name of recorder</td>
</tr>
<tr>
<td>Observer</td>
<td>Full name of observer</td>
</tr>
<tr>
<td>GPS</td>
<td>Record at start and end locations, always use NAD83 CONUS, UTM</td>
</tr>
<tr>
<td>Location</td>
<td>Detailed written description of start point, include landmarks, road #, etc.</td>
</tr>
<tr>
<td>Comments</td>
<td>Record signs of activity in area, water conditions, other pertinent information</td>
</tr>
</tbody>
</table>

Starting the Inventory

After the crew has organized their gear, determined their measurement interval, selected a random number, and recorded all the header information they are ready to begin the habitat inventory.

The observer should enter the stream slightly downstream of the starting point, tie off the hipchain, progress upstream to the starting point, reset the hipchain to zero and begin walking upstream through the first habitat unit. As the observer moves upstream they use the wading rod to measure depth at several locations in the habitat unit and make observations of unit type, width, substrates, and percent fines. When they reach the upstream end of the habitat unit they stop, turn to face the unit and report the unit type, maximum and average depth, riffle crest depth (where appropriate), dominant and subdominant substrate classes, percent fines, estimated width, and hipchain distance to the recorder.

As the observer moves upstream through the unit, the recorder follows behind, recording the amount of LW in the habitat unit. The recorder also assigns a number to the habitat unit. The recorder tells the observer if a unit is designated for measurements (i.e. if it is a ‘paired sample’ unit) only after they have recorded visual estimates.

The crew continues upstream making estimates in every habitat unit and making estimates and measurements in every paired sample unit until the inventory endpoint is reached.

Definitions of habitat attributes, how to measure and when to record them, and what to do when the inventory is complete are covered in the following sections.
Section 2: Stream Attributes

<table>
<thead>
<tr>
<th>Unit Type (see abbreviations)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riffle</td>
<td>Fast water, turbulent, gradient <12%; shallow reaches characterized by water flowing over or around rough bed materials that break the surface during low flows; also include rapids (turbulent with intermittent whitewater, breaking waves, and exposed boulders), chutes (rapidly flowing water within narrow, steep slots of bedrock), and sheets (shallow water flowing over bedrock) if gradient <12%</td>
</tr>
<tr>
<td>Cascade</td>
<td>Fast water, turbulent, gradient ≥12%; highly turbulent series of short falls and small scour basins, with very rapid water movement; also include sheets (shallow water flowing over bedrock) and chutes (rapidly flowing water within narrow, steep slots of bedrock) if gradient ≥12%</td>
</tr>
<tr>
<td>Run</td>
<td>Fast water, non-turbulent, gradient <12%; deeper than riffles with little or no surface agitation or flow obstructions and a flat bottom profile</td>
</tr>
<tr>
<td>Pool</td>
<td>Slow water, surface turbulence may or may not be present, gradient <1%; generally deeper and wider than habitat immediately upstream and downstream, concave bottom profile; includes dammed pools, scour pools, and plunge pools</td>
</tr>
<tr>
<td>Glide</td>
<td>Slow water, no surface turbulence, gradient <1%; shallow with little to no flow and flat bottom profile</td>
</tr>
<tr>
<td>Underground</td>
<td>Stream channel is dry or not containing enough water to form distinguishable habitat units</td>
</tr>
</tbody>
</table>

*modified from Armantrout (1998)

How to estimate:
Habitat units are separated by ‘breaks’. Breaks can be obvious physical barriers, such as a debris dam separating two pools or a small waterfall separating a pool and riffle, or may be less obvious transitional areas. Questions often arise as to whether a break is substantial enough to split two habitat units and where the exact location of the break occurs. When in doubt, the observer should consult with the recorder and the team should ‘think like a fish’. To determine if a break should be made, consider whether a fish would have to make an effort to move across the break and into the next habitat unit. If not, then it is probably a single habitat unit.

The channel may have both pool and riffle type habitat in the same cross-sectional area. Determine the predominate habitat type and record it as the unit type. For example if an area contains both pool and riffle, but the majority of the flow is into and out of the pool habitat, then call the unit a pool.

Questions also often arise as to the minimum size of individual habitat units. Generally, if a habitat unit is not at least as long as the wetted channel is wide, then do not count it as a separate habitat unit. This rule may need to be adjusted for streams wider than 5 m. Use best professional judgment in such cases.

See the section 2.1 for a list of features that should also be recorded while performing the inventory.

When to record: every habitat unit
Unit Number (#)

Definition:
Count of habitat units of similar types, used to determine location of paired sample units

How to estimate:
When counting habitat units, group pools and glides (slow water) together, and group riffles, runs, and cascades (fast water) together. For example, consider the following sequence of habitat units:

Habitat units in this sequence would be counted in the following manner (similar types are shaded same color):

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>Unit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>2</td>
</tr>
<tr>
<td>P</td>
<td>3</td>
</tr>
<tr>
<td>R</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>R</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
</tr>
<tr>
<td>R</td>
<td>5</td>
</tr>
<tr>
<td>P</td>
<td>5</td>
</tr>
<tr>
<td>RN</td>
<td>6</td>
</tr>
<tr>
<td>P</td>
<td>6</td>
</tr>
<tr>
<td>R</td>
<td>7</td>
</tr>
</tbody>
</table>

In the above example, the crew has counted six slow water (pool/glide) units and seven fast water (riffle/run/cascade) units.

When to record: every habitat unit; not recorded for features
Distance (m)

Definition:
Number of meters (rounded to the whole meter) from the start of the inventory to the upstream end of the habitat unit or distance from the start of the inventory to upstream end of a feature, used as spatial reference for data analysis and to locate features in the future.

How to estimate:
The observer walks upstream in the middle of the stream channel with a hipchain measuring device. When they reach the upstream break between habitat units or the upstream end of a feature they stop and report the distance to the recorder.

Care should be taken to keep the hipchain string in the middle of the stream, especially around bends and meanders. If the hipchain should break, retreat to the location where the break occurred, tie off the hipchain, and continue. If the hipchain is reset for any reason be sure to note it in the comments.

When to record: every habitat unit and feature

Estimated Width (m)

Definition:
Average wetted width of the habitat unit as estimated visually (typically to half-meter accuracy), used to calculate stream area. Wetted width is the distance from the edge of the water on one side of the main channel to the edge of the water on the opposite side of the main channel.

How to estimate:
The observer notes the general shape and width of the unit while walking to the upstream end. When they reach the upstream end of the unit the observer stops, turns to face the unit, and estimates the average wetted width. Measure the wetted width of the stream before starting each day to calibrate yourself.

When to record: every habitat unit
Maximum and Average Depth (cm)

Definitions:
Maximum Depth – vertical distance from substrate to water surface at deepest point in habitat unit
Average Depth – average vertical distance from substrate to water surface in habitat unit

How to estimate:
The observer uses a wading rod marked in 5 cm increments to measure water depth as they walk upstream through the habitat unit. Water depth in deepest spot is recorded as the maximum depth. Average depth is the average of several depth measurements taken throughout the habitat unit.

When to record: every habitat unit

Riffle Crest Depth (cm)

Definition:
Vertical distance from the substrate to the water surface at the deepest point in the riffle crest. The riffle crest is the shallowest continuous line (usually not straight) across the channel where the water surface becomes continuously riffled in the transition area between a riffle (or a run or cascade) and a pool (or glide) (Armantrout 1998); think of it as the last place water would flow out of the pool if the riffle ran dry.

How to estimate:
When the observer reaches the upstream end of a riffle (or a run or cascade) leading into a pool (or glide), they use the wading rod to measure the deepest point in the riffle crest. Record the depth in the RCD column for the riffle habitat row.

When to record: at the upstream end of any riffle, run, or cascade leading into a pool or glide
Dominant and Subdominant Substrate (1-9)

Definitions:
Dominant Substrate – size class of stream bed material that covers the greatest amount of surface area within the wetted channel of the habitat unit.

Subdominant Substrate – size class of stream bed material that covers the 2nd greatest amount of surface area within the wetted channel of the habitat unit.

How to estimate:
The following size classes are used to categorize substrates*. The substrate ‘Number’ is entered into the dominant and subdominant substrate columns on the datasheet.

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Size (mm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Matter</td>
<td>1</td>
<td></td>
<td>dead leaves, detritus, etc. – not live plants</td>
</tr>
<tr>
<td>Clay</td>
<td>2</td>
<td></td>
<td>sticky, holds form when rolled into a ball</td>
</tr>
<tr>
<td>Silt</td>
<td>3</td>
<td></td>
<td>slippery, does not hold form when rolled into a ball</td>
</tr>
<tr>
<td>Sand</td>
<td>4</td>
<td>silt – 2</td>
<td>grainy, does not hold form when rolled into ball</td>
</tr>
<tr>
<td>Small Gravel</td>
<td>5</td>
<td>3-16</td>
<td>sand to thumbnail</td>
</tr>
<tr>
<td>Large Gravel</td>
<td>6</td>
<td>17-64</td>
<td>thumbnail to fist</td>
</tr>
<tr>
<td>Cobble</td>
<td>7</td>
<td>65-256</td>
<td>fist to head</td>
</tr>
<tr>
<td>Boulder</td>
<td>8</td>
<td>>256</td>
<td>larger than head</td>
</tr>
<tr>
<td>Bedrock</td>
<td>9</td>
<td></td>
<td>solid rock, parent material, may extend into bank</td>
</tr>
</tbody>
</table>

* these size classes are based on the modified Wentworth scale

As the observer walks through the unit they scan the substrate. When they reach the upstream end of the unit they stop, turn to face the unit, and determine the dominant and subdominant substrate classes.

Estimate substrate size along the intermediate axis (b-axis). The b-axis is not the longest or shortest axis, but the intermediate length axis (see below). It is the axis that determines what size sieve the particle could pass through. Remember that your eyes are naturally drawn to larger size substrates. Be careful not to bias your estimate by focusing on the large size substrate.

Some units will contain a mixture of particle sizes. Consult with the recorder and use your best professional judgment to choose the dominant and subdominant sizes.

In units where the substrate is covered in moss, algae, or macrophytes classify the underlying substrate and make note of the plant growth in the comments. Only call organic substrate where there is dead and down leaves or other detritus covering the bottom of the unit.

When to record: every habitat unit
Rosgen Channel Type (A-G)

Definitions:
Stream channel classification system described in Rosgen (1996) based on entrenchment, width/depth ratio, sinuosity, and percent slope

How to Measure:
Before the crew begins the inventory they should make the measurements described below to determine the channel type. Channel types are based on the following channel characteristics:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrenchment</td>
<td>< 1.4</td>
<td>1.4 – 2.2</td>
<td>> 2.2</td>
<td>n/a</td>
<td>> 2.2</td>
<td>< 1.4</td>
<td>< 1.4</td>
</tr>
<tr>
<td>W/D Ratio</td>
<td>< 12</td>
<td>> 12</td>
<td>> 12</td>
<td>> 40</td>
<td>< 12</td>
<td>> 12</td>
<td>< 12</td>
</tr>
<tr>
<td>Sinuosity</td>
<td>1 – 1.2</td>
<td>> 1.2</td>
<td>> 1.2</td>
<td>n/a</td>
<td>> 1.5</td>
<td>> 1.2</td>
<td>> 1.2</td>
</tr>
<tr>
<td>Slope (%)</td>
<td>4 – 9.9</td>
<td>2 – 3.9</td>
<td>< 2</td>
<td>< 4</td>
<td>< 2</td>
<td>< 2</td>
<td>2 – 3.9</td>
</tr>
</tbody>
</table>

Although we record channel type for every unit, it was designed to describe a reach of stream. Our main objective here is to locate changes between channel types, which could either be abrupt (such as change from a B to a G near a road crossing) or less obvious transitional areas (such as a natural transition from a B to an A channel as you move upstream). If you think channel type may have changed take the time to make the calculations listed below to determine the channel type for the reach you are entering.

Full channel type descriptions and how to measure each of the channel characteristics in the table above can be found in Rosgen (1998). Never perform measurements in a pool, always attempt to find a run or deep riffle with well-defined bankfull indicators to perform measurements. A summary of each is listed below:

Entrenchment (page 31 & 32 in Rosgen field guide):
- locate suitable riffle or run area for bankfull measurement (page 24-25 in Rosgen field guide)
- measure the bankfull width and the maximum bankfull depth
- stretch a tape across the channel at 2x the maximum bankfull depth (this is the flood prone area)
- divide the flood prone area width by the bankfull width to determine entrenchment ratio

Width to Depth Ratio (page 32 in Rosgen field guide):
- locate suitable riffle or run area for bankfull measurement (page 24-25 in Rosgen field guide)
- measure the bankfull width and the maximum bankfull depth
- divide bankfull width by depth to determine width to depth ratio

Sinuosity (need aerial photo to determine)

Slope (page 37 in Rosgen field guide):
- Measure riffle to riffle gradient using clinometer

When to measure: every paired fastwater habitat unit*
* record for every fastwater paired unit, but remember this is describing a reach characteristic – see above

Percent Fines (%)

Definition:
Percent of the total surface area of the stream bed in the wetted area of the habitat unit that consists of sand, silt, or clay substrate particles (i.e. particles < 2 mm diameter).

How to estimate:
As the observer walks through the habitat unit they note the amount of sand, silt, and clay in the habitat unit. When they reach the upstream end of the unit, they stop, turn to face the unit and estimate the amount of the total surface area within the wetted channel that consists of sand, silt, or clay.

Where to estimate: every habitat unit

Large Wood (1-4 and rootwad)

Definition:
Count of dead and down wood within the bankfull channel of a habitat unit

How to estimate:
The recorder classifies and counts LW as they walk through the habitat unit. LW counts are grouped by the size classes listed below:

<table>
<thead>
<tr>
<th>Category</th>
<th>Length (m)</th>
<th>Diameter (cm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-5</td>
<td>10-55</td>
<td>short, skinny</td>
</tr>
<tr>
<td>2</td>
<td>1-5</td>
<td>>55</td>
<td>short, fat</td>
</tr>
<tr>
<td>3</td>
<td>>5</td>
<td>10-55</td>
<td>long, skinny</td>
</tr>
<tr>
<td>4</td>
<td>>5</td>
<td>>55</td>
<td>long, fat</td>
</tr>
<tr>
<td>RW</td>
<td>rootwad</td>
<td>rootwad</td>
<td>roots on dead and down tree</td>
</tr>
</tbody>
</table>

Only count wood that is:
- 1 m in length and > 10.0 cm in diameter
- Within the bankfull channel
- Fallen, not standing dead

Additionally:
- Count rootwads separately from attached pieces of LW
- Estimate the diameter of LW at the widest end of the piece
- A piece that is forked, but is still joined counts as only one piece of LW
- Only count each piece one time, do not count a piece that is in two habitat units twice
- Enter the total count for each size category into the appropriate column on the datasheet

Where to estimate: every habitat unit
Actual Width (m)

Definition:
Average wetted width of the habitat unit as measured with 50 m tape, used to calculate stream area. Wetted width is the distance from the edge of the water on one side of the main channel to the edge of the water on the opposite side of the main channel.

How to measure:
Use a meter tape to measure the wetted width of the stream in at least three locations. Average the measurements to obtain the average wetted width.

Where to measure: paired sample habitat units

Bankfull Channel Width (m)

Definition:
Actual width of channel at bankfull elevation as measured with meter tape. Depending on channel type, bankfull may or may not be represented by the top of the banks. Use bankfull indicators to locate the top of the bankfull channel (Rosgen 1996).

How to measure:
Determine the location of bankfull water depth on both banks of the habitat unit and measure across the channel perpendicular to flow from bankfull to bankfull.

Where to measure: paired sample riffles, runs, or cascades
Riparian Width (m)

Definition:
Width of the riparian area at an elevation of two times the maximum bankfull depth, measured for both left and right banks (left and right as oriented facing upstream). Maximum bankfull depth is the greatest vertical distance from the substrate to the top of the bankfull channel across a bankfull transect.

How to measure:
- Stretch a measuring tape across the top of the bankfull channel – this is your bankfull transect
- Use a wading rod to find the maximum bankfull depth
- Place the clinometer against the wading rod at two-times the maximum bankfull depth
- Using the clinometer to maintain a slope of zero degrees, site perpendicular to the channel to the intersection with the nearest landform. It may be necessary to site to an intermediate point, move the wading and clinometer, and site again if the tape measure is too short or the view is obstructed
- Measure the distance from the edge of the bankfull channel to the landform – do this separately for the left and right (as facing upstream) riparian areas

Note: if riparian width is more than 50 m, record 51 as the riparian width and note in ‘Comments’ that riparian width was longer than meter tape

Where to measure: paired sample riffles, runs, or cascades
Gradient (%)

Definition:
Change in vertical elevation per unit of horizontal distance of the water surface (Armantrout 1998)

How to measure:
Gradient is measured in riffles with a clinometer using the following steps:

- Observer stands at upstream end of riffle, recorder stands at downstream end of riffle
- Recorder sites upstream to the height of their eye on the observer using clinometer
- Record the **percent** slope, **not the degrees** (tip the clinometer all the way back to determine which side of the scale is percent)

The recorder should determine the height of their eye on the observer at the beginning of the inventory. Be certain that the observer and recorder are standing with their feet in the same position (preferably with feet at top of water surface) within the stream channel. If the observer is standing on top of a boulder and the recorder is standing in a depression, the measured gradient will be incorrect.

Where to measure: paired sample riffles, runs, or cascades

Water Temperature (C)

Definition:
Temperature of the water in degrees Celsius.

How to measure:
Place the thermometer in moving water in an area not exposed to direct sunlight. Leave the thermometer sit for at least three minutes, then record the water temperature in degrees Celsius.

Where to measure: paired sample riffles, runs, or cascades

Photo (ID#)

Definition:
Photograph of habitat unit or crossing feature.

How to measure:
Take photo facing upstream with observer holding wading rod in picture. Be sure to get entire width (and length if possible) of habitat unit or crossing feature in the photo.

Where to measure: paired sample riffles, runs, or cascades and any crossing features encountered
Features

Definition: Points on a stream that could potentially serve as landmarks, may be natural or manmade.

How to measure: Record the distance to the upstream end of all features and take a photograph of all crossing features.

Where to record: wherever found

<table>
<thead>
<tr>
<th>Channel Feature</th>
<th>Abbreviation</th>
<th>What to Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterfall¹</td>
<td>FALL</td>
<td>Distance, estimated height</td>
</tr>
<tr>
<td>Tributary</td>
<td>TRIB</td>
<td>Distance, average wetted width, into main channel on left or right (as facing upstream)</td>
</tr>
<tr>
<td>Side channel²</td>
<td>SCH</td>
<td>Distance, average wetted width, whether it is flowing into or out of main channel on left or right (as facing upstream)</td>
</tr>
<tr>
<td>Braid³</td>
<td>BRD</td>
<td>Distance at start and distance at end; continue with normal inventory up channel with greatest discharge</td>
</tr>
<tr>
<td>Seep (Spring)</td>
<td>SEEP</td>
<td>Distance, left or right bank (as facing upstream), size, coloration</td>
</tr>
<tr>
<td>Landslide</td>
<td>SLID</td>
<td>Distance, left or right bank (as facing upstream), estimated size</td>
</tr>
<tr>
<td>Other</td>
<td>OTR</td>
<td>Distance, description of feature, example: found water intake pipe going to house here; old burned out shack on side of stream; Big Gap campground on left; alligator slide here, etc.</td>
</tr>
</tbody>
</table>

1 must be vertical with water falling through air to be a waterfall and not a cascade, do not record unless >1m high
2 two channels, continue with normal inventory up channel with most volume
3 three or more channels intertwined, continue with normal inventory up channel with most volume

<table>
<thead>
<tr>
<th>Crossing Feature</th>
<th>Abbreviation</th>
<th>What to Record*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>BRG</td>
<td>Distance, width, height, road or trail name and type (gravel, paved, dirt, horse, ATV, etc.), photo</td>
</tr>
<tr>
<td>Ford</td>
<td>FORD</td>
<td>Distance, road or trail name and type (gravel, paved, dirt, etc.), photo</td>
</tr>
<tr>
<td>Dam</td>
<td>DAM</td>
<td>Distance, type, condition, estimated height, dam use, name of road or trail, if applicable; include beaver dams, photo</td>
</tr>
<tr>
<td>Culvert</td>
<td>V</td>
<td>Distance, road or trail name, type, # of outlets, diameter/width, height, material, perch (distance from top of water to bottom lip of culvert, natural substrate (present or absent through length), photo</td>
</tr>
</tbody>
</table>

* photograph all crossing features with person and wading rod for scale, record ‘Y’ in ‘Photo’ column

We cannot stress enough the importance of fully and accurately describing features. This means getting out a quadrangle map and finding road, trail, and tributary names and recording them in ‘Comments’ and taking the time to describe the location of features in relation to landmarks found on quadrangle maps.

Take photos of all crossing features!
Section 3: Wrapping Up

End the inventory where:
- Forest Service property ends
- Stream is dry for more than 500 m
- Stream channel is < 1.0 m wide for more than 500 m

Record the following in the Comments:
- Time and date
- Reason for ending the inventory
- Detailed written description of location using landmarks for reference
- Be sure the header information is completed – GPS, etc

When you return to home base:
- Immediately download the data and check file to be sure all data downloaded
- Check header information to be sure it is complete
- Save to the computer and create a backup copy
- Document any photographs
- If using paper, make a photocopy of the data and store in secure location
Section 4: Summary

Before starting:
- fill in header information

Record for every habitat unit:
- Unit Type
- Unit Number
- Distance
- Estimated Width
- Maximum Depth
- Average Depth
- Dominant Substrate
- Subdominant Substrate
- Percent Fines
- Large Wood

Record for every riffle, run, or cascade leading into a pool or glide:
- Riffle Crest Depth

Record for every paired sample pool:
- Measured Width

Record for every paired sample riffle:
- Measured Width
- Bankfull Channel Width
- Riparian Width (left and right)
- Gradient
- Rosgen Channel Type
- Water temperature
- Photograph

Record features and full feature descriptions wherever they are encountered.

Photograph all crossings!
Section 5: GPS Instructions

Garmin BVET Waypoint Labels:

Garmin BVET Waypoint Label Examples:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S123</td>
<td>Start location of BVET survey</td>
</tr>
<tr>
<td>E123</td>
<td>End location of BVET survey</td>
</tr>
</tbody>
</table>

123 = Site identification number

How to Find a Waypoint on GPS:

- Turn Power On.
- On the main menu screen touch the **Where To?** icon with the magnifying glass.
- Touch the **Waypoints** icon with the red golf flag.
- At the bottom of the next screen touch the **ABC** pyramid button.
- Start typing in the name of the desired waypoint. Once the waypoint name is identified by the GPS it will list the waypoints associated with that waypoint name.
 - Note: Touch the left and right arrows at the bottom of the screen to move from letters to numbers to symbols. Touch the down arrow on the letters to get lowercase and up arrow to get back to uppercase.
- Touch the waypoint name you were looking for when the list pops up.
- To navigate to this location touch the big green **Go** button.

Changing Waypoints:

- To switch waypoints close the map screen by touching the **X** close button in the lower left corner of the screen.
- On the main menu screen touch the **Where To?** icon with the magnifying glass.
- Touch the Stop Navigation button and repeat the top process to get to a new waypoint.
Garmin GPS Oregon 400T Cheatsheet

Turn On
- Press Power key, wait for GPS to boot

Turn Off
- Press and hold Power key

Backlight Strength
- Press and quickly release Power key, adjust with touchscreen options

Create New Waypoint
1. To create a waypoint of your current position touch “Mark Waypoint”
2. Touch “Save and Edit”, touch “Change Name”, type desired label, touch “Green Check Icon” to save

Calibrate compass
1. Whenever batteries are removed you must calibrate the compass so the map orients correctly
2. Touch “Setup”, touch “Heading”, touch “Press to Begin Compass Calibration”
3. Touch “Start”, hold GPS level and rotate it twice on your palm

Data Fields
1. To change the data fields on the map page touch “Map”
2. Touch a data field at the top of the map, then select your desired data field

Calibrating the Touchscreen
1. If the touchscreen buttons are not responding properly, recalibrate the touchscreen
2. While the GPS is turned off, press and hold the power key for ~30 seconds
3. Follow instructions on the screen until calibration is complete
Appendix: Field Guide, Equipment Checklist, Rosgen Worksheet

Record for every habitat unit:
- **Unit Type** – pool, riffle, run, cascade, glide, feature (see below)
- **Unit Number** – group pools & glides; group riffles, runs, cascades
- **Distance (m)** – at upstream end of unit
- **Estimated Width (m)** – visual estimate of average wetted width
- **Maximum Depth (cm)** – deepest spot in unit
- **Average Depth (cm)** – average depth of unit
- **Dominant Substrate (1-9)** – covers greatest amount of surface area in unit
- **Subdominant Substrate (1-9)** – covers 2nd most surface area in unit
- **Percent Fines (%)** – percent of bottom consisting of sand, silt, or clay
- **Large Wood (1-4, RW)** – count of dead and down wood in the bankfull channel

Record for every riffle, run, or cascade leading into a pool or glide:
- **Riffle Crest Depth (cm)** – deepest spot in hydraulic control between riffle type habitat and pool type habitat

Record for paired sample pools:
- **Measured Width (m)** – measurement of average wetted width

Record for paired sample riffles:
- **Measured Width (m)** – measurement of average wetted width
- **Channel Width (m)** – measurement of bankfull channel width
- **Riparian Width (m)** – L&R, measurement of floodplain
- **Gradient (%)** – clinometer measurement of riffle slope
- **Water Temperature (°C)** – temperature of water in Celsius
- **Rosgen** – channel type classification
- **Photo (y or n)** – picture of habitat unit or crossing feature

Unit Types
- **Riffle (R)** – fast water, turbulent, gradient <12%; includes rapids, chutes, and sheets if gradient <12%
- **Cascade (C)** – fast water, turbulent, gradient ≥12%, includes sheets and chutes if gradient >12%
- **Run (RN)** – fast water, little to no turbulence, gradient <12%, flat bottom profile, deeper than riffles
- **Pool (P)** – slow water, may or may not be turbulent, gradient <1%, includes dammed, scour, and plunge pools
- **Glide (G)** – slow water, no surface turbulence, gradient <1%, shallow with little flow and flat bottom profile
- **Underground (UNGR)** – distance at upstream end, why dry
Features
- **Waterfall (FALL)** – distance, height
- **Tributary (TRIB)** – distance, width, in on L or R
- **Side Channel (SCH)** – distance, width, in or out on L or R
- **Braid (BRD)** – distance at downstream and upstream ends
- **Seep or Spring (SEEP)** – distance, on left or right, amount of flow
- **Landslide (SLID)** – distance, L or R, est. size and cause
- **Other (OTR)** – record distance, describe feature in comments
- **Crossing Features** – photograph and record the following:
 - **Bridge (BRG)** – distance, height, width, road or trail name & type
 - **Dam (DAM)** – distance, type, est. height, road or trail name & type
 - **Ford (FORD)** – distance, road or trail name & type
 - **Culvert (V)** – distance, type (pipe, box, open box, arch, open arch), size, material, natural substrate, perch, road or trail name

Substrates
- **Organic Matter** – dead leaves detritus, etc., not living plants
- **Clay** – sticky, holds form when balled
- **Silt** – slick, does not hold form when balled
- **Sand** – >silt-2mm, gritty, doesn’t hold form
- **Small Gravel** – 3-16mm, sand to thumbnail
- **Large Gravel** – 17-64mm, thumbnail to fist
- **Cobble** – 65-256mm, fist to head
- **Boulder** – >256, > head
- **Bedrock** – solid parent material

Large Wood
- **#1** <5m long, 10-55cm diameter
- **#2** <5m long, >55cm diameter
- **#3** >5m long, 10-55cm diameter
- **#4** >5m long, >55cm diameter
- **RW** – rootwad, count separately from attached LW, record in comments, do not record wood <10cm diameter, <1m length

Rosgen Channel Types

<table>
<thead>
<tr>
<th>Rosgen Channel Types</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrenchment</td>
<td>< 1.4</td>
<td>1.4 – 2.2</td>
<td>> 2.2</td>
<td>n/a</td>
<td>> 2.2</td>
<td>< 1.4</td>
<td>< 1.4</td>
</tr>
<tr>
<td>W/D Ratio</td>
<td>< 12</td>
<td>> 12</td>
<td>> 12</td>
<td>> 40</td>
<td>< 12</td>
<td>> 12</td>
<td>> 12</td>
</tr>
<tr>
<td>Slope (%)</td>
<td>4 – 9.9</td>
<td>2 – 3.9</td>
<td>< 2</td>
<td>< 4</td>
<td>< 2</td>
<td>< 2</td>
<td>2 – 3.9</td>
</tr>
</tbody>
</table>

Measuring Riparian Width (paired fast-water units only)
- Place clinometer against the wading rod at two times max bankfull depth
- Use the clinometer as a level – keep the slope at 0.0 – and site to the nearest landform perpendicular to the channel
- Measure the distance from the edge of the bankfull channel to the intersection with the landform
- Do this for both the left and right banks
- If riparian width in more than 50 m, record 51 as the riparian width and in ‘Comments’ note that riparian was > 50 m wide
End inventory
 - End the inventory when the calculated sample distance has been inventoried.

Equipment Checklist

- hipchain
- extra string for hipchain
- wading rod
- 50 m tape measure
- clinometer
- thermometer
- datalogger
- GPS unit
- camera
- backpack
- pencils
- flagging
- markers
- waterproof backup datasheets
- clipboard
- BVET field guide on waterproof paper
- topographic maps
- water
- water filter
- lunch
- first aid kit
- radio/cell phone
- toilet paper
- felt bottom wading boots
- raingear
Rosgen Measurements

All measurements should be made across a transect in an area of uniform flow, specifically riffle or run sections with few irregularities in cross-sectional shape. Avoid areas influenced by culverts, bridges, tributaries, side-channels, etc.

- What is the entrenchment ratio?
 - Entrenchment ratio = flood prone width / bankfull width
 - Floodprone width = width at two-times maximum bankfull depth

- What is the width/depth ratio?
 - Width/depth ratio = bankfull width / average bankfull depth
 - Be sure to use same units of measure (centimeters) for width and depth
 - Measure bankfull depth (not water depth) at several locations across transect to obtain average bankfull depth

- What is the gradient?
 - Measure riffle to riffle slope (%) with clinometer
Rosgen Worksheet

A. Bankfull Channel Width (m) _____
B. Maximum Bankfull Depth (cm) _____ *2 = _____
C. Average Bankfull Depth (cm) _____
D. Right Riparian Width (m) _____
E. Left Riparian Width (m) _____
F. Gradient (%) _____

Entrenchment Ratio = (A+D+E)/A

(_____ + _____ + _____) / _____ = _____

Width Depth Ratio = (100*A)/C

(100* _____) / _____ = _____

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrench. ratio</td>
<td>< 1.4</td>
<td>1.4 – 2.2</td>
<td>> 2.2</td>
<td>n/a</td>
<td>> 2.2</td>
<td>< 1.4</td>
<td>< 1.4</td>
</tr>
<tr>
<td>W/D ratio</td>
<td>< 12</td>
<td>> 12</td>
<td>> 12</td>
<td>> 40</td>
<td>< 12</td>
<td>> 12</td>
<td>< 12</td>
</tr>
<tr>
<td>Gradient (%)</td>
<td>4 – 9.9</td>
<td>2 – 3.9</td>
<td>< 2</td>
<td>< 4</td>
<td>< 2</td>
<td>< 2</td>
<td>2 – 3.9</td>
</tr>
</tbody>
</table>

*these are the dominant ranges, values may be slightly outside these ranges
Appendix C: Field Methods for Macroinvertebrate Sampling
Macr

Macroinvertebrate Equipment List

- Mesh wash bucket
- Rinse bucket
- Squirt bottle
- Seine
- D-Frame nets
- PVC ¼ sq meter quadrates
- Tweezers
- Collection jars
- Sample labels
- Pencils
- Markers
- Ethyl alcohol

Macroinvertebrate Sampling Methods

1. Riffl

1. Riffle Sample
 - Take four 0.25 m² samples from midriffle or the thalweg (path of deepest thread of water).
 - For each of the 4 samples, place a seine (600 μm mesh, one meter wide) in moderate to fast current in areas with gravel to cobble substrate. Place some rocks on the bottom edge of the seine to hold it on the channel bottom.
 - Dislodge benthos by vigorously disturbing 0.25 m² (20 x 20 in.) in front of the net (use 0.25 m² PCV quadrate to sample correct area). Large rocks should be hand washed into the net.
 - After each of the 4 samples is collected wash the contents of the net into a mesh wash bucket to prevent loss of inverts when collecting the next sample. All four samples are composited in the bucket.
 - Find a suitable location on the side of the stream, spread the seine out on the ground, and wash the contents of the bucket onto the seine. With tweezers methodically sort through the sample picking out the invertebrates and placing them in a sample jar containing ethyl alcohol.
 - The picking process can easily take an hour to complete; be patient and thorough. When complete be sure there is a sample label inside the jar as well as one on the outside.
 - *This sample must be kept separate from all other subhabitat collections.*

2. Multi-Habitat Sample

A. Sweep Sample - Involves sampling a variety of non-riffle habitats with the aid of an 800 x 900 μm mesh D-frame dipnet. Each habitat is sampled in at least three (3) replicates, where possible.

 1) *Undercut banks/root mats* - sampled by placing a large rootwad into the D-frame dipnet and shaken vigorously. The contents are removed from the dipnet and placed into a mesh wash bucket. Note: if undercut banks are present in both run and pool areas, each is sampled separately with three replicates.

 2) *Marginal emergent vegetation* (exclusive of *Justicia americana* beds) – sampled by thrusting (i.e., “jabbing”) the dipnet into the vegetation for ca. 1 m, and then
sweeping through the area to collect dislodged organisms. Material is then rinsed in the wash bucket and any sticks, leaves and vegetation are thoroughly washed and inspected before discarding.

3) **Bedrock or slab-rock habitats** - sampled by placing the edge of the dipnet flush on the substrate, disturbing approximately 0.1 m² of area to dislodge attached organisms. Material is emptied into a wash bucket.

4) **Justicia americana (water willow) beds** - sampled by working the net through a 1 m section in a jabbing motion. The material is then emptied into a wash-bucket and any *J. americana* stems are thoroughly washed, inspected and discarded.

5) **Leaf Packs** - preferably “conditioned” (i.e., not new-fall material) where possible; samples are taken from a variety of locations (i.e., riffles, runs and pools) and placed into the wash-bucket. The material is thoroughly rinsed to dislodge organisms and then inspected and discarded.

B. Silt, sand, and fine gravel

1) **Netting** - a D-frame dipnet is used to collect sand and silt depositional areas by placing the net on the substrate and vigorously stirring the sediments in front of the net. An area of 0.1 m² is sampled for each replicate making sure, where possible, that replicates are taken from different depositional areas.

C. Aufwuchs sample - small invertebrates associated with this habitat are obtained by washing a small amount of rocks, sticks, leaves, filamentous algae and moss into a medium-sized bucket half filled with water. The material is then elutriated and sieved with the nitex sampler.

D. Rock Picking - invertebrates are picked from 15 rocks (large cobble-small boulder size; 5 each from riffle, run and pool). Selected rocks are washed in a bucket half filled with water, then carefully inspected to remove invertebrates with fine-tipped forceps.

E. Wood Sample - pieces of submerged wood, ranging from roughly 3 to 6 meters (10 to 20 linear feet) and ranging from 5–15 cm (2–6 inches) in diameter, are individually rinsed into the wash-bucket. Pieces of wood are inspected for burrowers and crevice dwellers. Large diameter, well-aged logs should be inspected and handpicked with fine-tipped forceps.
Macroinvertebrate Sampling Summary

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sampling Device</th>
<th>Habitat</th>
<th>Replicates (composited)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Riffle*</td>
<td>Kick Seine/Mesh bucket/PVC Sq.</td>
<td>Riffle</td>
<td>4 - 0.25 m²</td>
</tr>
<tr>
<td>2 Sweep - Undercut banks</td>
<td>Dipnet/Mesh Bucket</td>
<td>Undercut Banks/Roots</td>
<td>3</td>
</tr>
<tr>
<td>3 Sweep - Emergent vegetation</td>
<td>Dipnet/Mesh Bucket</td>
<td>Emergent Vegetation</td>
<td>3</td>
</tr>
<tr>
<td>4 Sweep - Bedrock</td>
<td>Dipnet/Mesh Bucket</td>
<td>Bedrock/Slabrock</td>
<td>3</td>
</tr>
<tr>
<td>5 Sweep - Justicia beds</td>
<td>Dipnet/Mesh Bucket</td>
<td>Justicia beds</td>
<td>3</td>
</tr>
<tr>
<td>6 Sweep - Leaf packs</td>
<td>Dipnet/Mesh Bucket</td>
<td>Riffle-Run-Pool</td>
<td>3</td>
</tr>
<tr>
<td>7 Silt,Sand, Fine Gravel</td>
<td>Dipnet/Mesh Bucket</td>
<td>Margins</td>
<td>3</td>
</tr>
<tr>
<td>8 Aufwuchs</td>
<td>Dipnet/Mesh Bucket</td>
<td>Riffle-Run-Pool</td>
<td>3</td>
</tr>
<tr>
<td>9 Rock Picking</td>
<td>Forceps</td>
<td>Riffle-Run-Pool</td>
<td>15 rocks (5-5-5)</td>
</tr>
<tr>
<td>10 Wood</td>
<td>Mesh Bucket</td>
<td>Riffle-Run-Pool</td>
<td>3-6 linear m</td>
</tr>
</tbody>
</table>

*Sample contents kept separate from other habitat samples.
Appendix D: Field Methods for Riffle Stability Index
Riffle Stability Index Field Methods

The Riffle Stability Index procedure is best applied to stream channels with gradients from 1.5 to 5 percent. The channel is best described as a Rosgen B-2, B-3, B-4 or F-2, F-3, F-4 type. Three riffles are measured within each uniform Rosgen reach. Each riffle selected for measurement should be representative or typical within the reach. An ideal riffle is located in a straight section of reach, has uniform depth in the cross-section, and is at a point of thalweg crossover. Flow is evenly distributed across the channel and is not concentrated toward either bank. For each riffle, field data are gathered to determine the distribution of particle sizes present. An estimate of the common large size of particle capable of movement at bankfull flow is obtained by sampling a nearby bar deposit.

1. Pebble Count - Particle Size Distribution on the Riffle

A particle size distribution is obtained on the riffle by a bed material sampling procedure called a "Wolman Pebble Count". A sample size of at least 200 is necessary for RSI. The sample points are identified by establishing a sampling grid over the riffle, with transects across the channel from bankfull to bankfull over the entire length of riffle. Samples are taken every foot along the transect. Thus, bankfull width in feet will equal the number of samples per transect. Dividing 200 by the number of samples per transect and rounding up will determine the number of transects needed. Spacing between transects is determined by dividing the length of riffle by the number of transects needed. For each sample, the intermediate axis of the particle is measured using a metric caliper, and is tallied by size class. For very large particles, count the same particle as many times as you encounter it. The cumulative percent finer is then calculated for each size class, and plotted on the graph.

2. Bar (Cobble) Count - Dominant Large Particles on a Bar

Measure 30 of the freshly moved dominant large particles residing on a bar or similar depositional feature to estimate the largest particle size transported at flows of bankfull and above. Freshness is evaluated by lack of growing vegetation and lack of embeddedness of the particles. The depositional feature must be in close proximity to the riffle being examined, and can include laterally attached bars, side bars, and central bars. The entire bar should be visually inspected to identify the dominant large size of particle present. If a bar deposit cannot be found, trained field personnel may select the large mobile particles from within the riffle. When this is done, a sample size of at least 20 is needed. For each of the particles, the intermediate axis is measured and recorded to the nearest millimeter. Calculate the arithmetic mean of the sample, and compare this with the plotted cumulative particle size distribution for the riffle. On the X axis, find the mean bar sample grain size. Go up to the cumulative particle size distribution, and read from the Y axis the percentile this represents. This percentile is the Riffle Stability Index.