Computers

and electronics
A il 7 Computers and Electronics in Agriculture in agricultur.e

ELSEVIER 27 (2000) 335-354

www elsevier.com/locate/compag

Using DCOM to support interoperability in
forest ecosystem management decision support
systems

W.D. Potteilr 2% S, Liu ?, X. Deng % H.M. Rauscher ®

2 Artificial In telligeice Center, GSRC IIl, University of Georgia, Athens, GA 30602, USA
® USDA ForestService, Bent Creek Experimental Forest, Asheville, NC, USA

Abstract ,

Forest ecosystems exhibit complex dynamics over time and space. Management of forest
ecosystems involves the need to forecast future states of complex systems that are often
undergoing structural thanges. This in turn requires integration of quantitative science and
engineering components with socio-political, regulatory, and economic considerations. The
amount of data, information and knowledge involved in the management process is often
overwhelming. Integrated decision support systems may help managers make consistently
good decisions concerming forest ecosystem management. Integrating computer systems using
a system-specific or custom approach has many disadvantages. \We compare a variety of
current approaches, suggest characteristics that an approach should have, and propose that
the Distributed Component Object Model is an approach that is very suitable for forest
ecosystem decision sypport system integration. © 2000 Elsevier Science B.V. All rights
reserved.

Keywords: Interoperabili y; Decision support systems; DCOM; System integration

1. Introduction

Decision support [Systems (DSSs) may offer help in making decisons in Stuaions
where the problem+ solving process requires a key contribution from expert judg-
ment but human | information-processing limitations impede decison-making

* Corresponding author.
E-mail address: potter@cs.uga.edu (W.D. Potter)

0168-1699/00/$ - see front matter 0 2000 Elsevier Science B.V. All rights reserved.
PIl: S0168-1699(00)00091-0

336 et al. /Computers and Electronics in Agriculture 27 (2000) 335-354

(Rauscher, 1995). The ultimate objective of a DSS is to assst decison-makers (e.g.
managers, planners, public officids, scientists, and the generd public) in planning
and decison-making processes by giving the decison-mekers useful and scientifi-
cdly sound information.

A DSS may consst of a number of subsysems, each with-a specific task. In
forest ecosytemm management (FEM), a DSS may contan a user interface, a
database, a geographicd information system (GIS), a knowledge base, smulation
and optimizetion models, hdp/hypertext management, and data visudization and
decison methods (Rauscher, 1999).

Different foret ecosysem management decison support sysems (FEM-DSSs)
support different parts of the ecosystem management process (Rauscher, 1999).
FEM-DSSs may be categorized as ether ‘full service or ‘functiond service
systems. Full sarvice FEM-DSSs attempt to be comprehensive by offering support
for the complete forest ecosysem management process. In addition, these full
sarvice sysems (aso caled full service modules) may be classified by their specific
level or scde of support: regiond assessment, forest planning and project-leve
planning. Functiona service FEM-DSSs provide more narrowly speciaized support
for one or a few phases of the forest ecosystem management process. These service
modules are further categorized by their function; for example, group negotiations,
vegetation dynamics, disurbance smulation, or spatid visudization.

Mowrer et a. (1997) reviewed over 30 FEM-DSSs and reported several notewor-
thy conclusons. Firg, they found no single system that successfully addresses every
important aspect of forest ecosystem management. Second, none of the systems
comprehensvely address ecologicd and management interactions across multiple
scales. Third, the current generation of FEM-DSSs is much less capable of
addressing socid and economic issues than biophysicd issues. Findly, no system
smultaneoudy consders socid, economic and biophysica issues’ and only one
system provides group consensus-building support.

Most FEM-DSSs were developed independent of one another. As a result, they
ae typicdly large, monalithic, sand-done systems incgpable of peforming joint
problem-solving tasks without extendve revisons. Because none of the exiding
FEM-DSSs have been found cepable of addressing the full range of support
required for the management of a complex forest ecosystem (Mowrer et d., 1997,
Rauscher, 1999), an ided FEM-DSS requires the combined capabilities of many of
the available sysems to work together. This necesstates both full service and
functiond service sysem integration. Furthermore, it is often more cost effective to
re-use exiding software than to develop custom software when an exising FEM-
DSS is to be enhanced to provide additional services.

FEM-DSSs and/or their component subsystems have been written in different
software languages, resde on different hardware platforms, have different data
access mechanisms, and different subsystem interfaces. For example, nongeograph-
ical databases may be written in Oracle, GIS databases in ARC/INFO, knowledge

' Although EM DS fallsinto the category of systems that do not do these things, it is capabl e of
supporting these if the user provides the proper design and implementation (Reynolds et al., 1997).

W.D. Potier et al. / Computers and Electronics in Agriculture 27 (2000) 335-354 337

heterogeneity has to be addressed when integrating FEM-DSSs. Although efforts a
integrating FEM-DSSs do exid, they have been ad hoc, yidding unique, point-to-
point custom solutions These cusom solutions are typicdly difficult to mantain
and extend (Rauscher, 1999).

One solution to many of the problems in systems integration is to provide an
interoperable architecture for software systems (Potter et d., 1992, 1994; Otte et d.,
1996). Interoperability is the ability of two or more software components to
cooperate by exchanging services and data with one another, despite the possible
heterogeneity in their language, interface and hardware platform (Heiler, 1995;
Wegner, 1996; Sheth, 1998). Interoperable software architectures provide a stan-
dard that promotes communication between components, and provides for the
integration of legacy and newly developed components.

In the past decade, organizations have been moving manframebased systems
toward open, distributed computing environments. A distributed computing envi-
ronment is an environmeint where multiple computers are networked together, and
alowed to share data and processng responghbilities. The demand for interoperabil-
ity has been driven by the accelerated construction of large-scade distributed systems
for operational use and by increasing use of the Internet (Manola, 1995). Dis-
tributed computing offers many advantages, including location transparency to
users, scalability (adding more capability by adding more computers to the net-
work), fault tolerance (dlowing processing to continue even when a computer or
network connection is broken), load baancing (sharing the work load equdly
among the networked computers) and resource sharing (sharing databases or other
special services). As such, much discusson of interoperability and its research have
been concerned with distributed computing; for example, the recent emergence of
Java, the Object Management Group’'s CORBA (Common Object Request Broker
Architecture) and Microsoft’s DCOM (Distributed Component Object Model) are
all for this purpose. In addition, object orientation (00) is probably the most
widely used approach in software development and is the basis for the CORBA and
DCOM interoperability architectures. 00 is an organization scheme for sets of
objects that interact, and share data and operations. 00 makes it easer to maintain
software modules j@and makes it possble to re-use exiging software objects.

bases in Prolog, a{Td a dmulaion modd in Fortran. This kind of development

Consequently, platform independence, as well as language independence, has been
a major focus in these interoperability architectures.
Designing, implementing, and mantaining interoperable software architectures
for FEM-DSSs areLurgent and chalenging tasks for current FEM-DSS developers.
But which archiectural approach is best suited for FEM-DSSs? This paper
examines severa existing approaches to software interoperability. First, an
overview of the different types of interoperability is presented. Then, the interoper-
ability architectures of five representative FEM-DSSs are andyzed followed by an
examindion offour computer science approaches. The remaining sections identify
the design criteria for an effective interoperability software architecture and de-
scribe a prototype developed usng DCOM. In addition to existing interoperability
approaches, a brief/ Jook is taken a a new gpproach that may have a sgnificant

338 W.D. Potter et a/. /Computers ond Electronics in Agriculture 27 (2000) 335-354

impact on distributed systems. This approach is based on issuing commands to
digtributed software objects via the Internet (Wash, 1998; Winer, 1998; Uddl,
1999).

2. Interoperability

The scope of interoperability has changed dragticaly since the firgt introduction
of a few interconnected computers. Currently, we think of the scope as including
any gpplication on any computer interfacing with any other gpplication on any
other computer; a globa scope (Sheth, 1998). However, having a global perspective
introduces a variety of issues that need to be addressed in order to understand what
interoperability redly is. The following levels or types of interoperability have been
identified.

e Platform interoperability (lso known as location and technica interoperability)
resolves the differences in the hardware, system software, and the services that
ded with communication between two objects (Lockemann et d., 1997; NC3A,
1997). 1t dlows a dient to make a trangparent call to a server even if the server
runs in another process or on another computer, so that the call looks as if it
were an m-process (locd) cdll.

e Badc interoperability means that binary components (executables) uniquey
developed by certan developers are assured to function with other binary
components built by different developers.

o Versoning interoperability iS the agreement that one system component can be
upgraded without requiring al other sysem components to be upgraded.

e Language interoperability provides language independence such that applica
tions which are implemented in different programming languages can be inte-
grated (Meek, 1994). As a result, components written in different programming
languages can communicate with each other.

e Notationa interoperability (Lockemann et d., 1997) can be further classfied
into data interoperability, object interface interoperability, and object framework
interoperability. Data interoperability addresses disagreements on data formats,
types, structures and representations (Manola, 1995; Wegner, 1996). Object
interface interoperability dedls with agreements on object interface characteristics
(Manola, 1995). Object framework mteroperablllty is concerned with coopera-
tion among the sets of object classes found in object frameworks (Gamma e d.,
1995). Incompatible or different functiond interfaces, data models, data typ&s,
database schemas, terminology, and data formas are example issues to be
addressed by notationd interoperability (Lockemann et a., 1997).

e Semantic interoperability ensures that exchanges of services and data make
sensg, i.e that the client and the server have a common undergtanding of the
meanings of the requested services and data (Heller, 1995). Semantic interoper-
ability is often closdly linked to notationd interoperability because issues associ-
ated with notationa interoperability can and do lead to semantic conflicts in
many cases (Heller, 1995).

W.D. Potter et al. /Computers and Electronics in Agriculture 27 (2000) 335-354 339

e Coordinationd interoperability deds with the interaction between dient and
sarver operationd; for example, preservation of tempord as well as functiond
properties (order constraints on operations or coordination of inputs from
multiple input streams) (Wegner, 1996). Coordinationa interoperability is usu-
aly obtained through common policies, contracts and protocols to which the
components subject their activities (Lockemann et d., 1997).

It is technicdly more difficult to achieve semantic interoperability and coordina-
tiond interoperability (both consdered to be high-levd types) than platform
interoperability, language interoperability and notationd interoperability (al con-
Sdered to be low-level types). For example, interoperability can be redized with
reasonable efforts for a wide range of differences in data formats and for recog-
nized differences of representation (Wegner, 1996). Semantic interoperability, how-
ever, may be hard to achieve in many cases (Heller, 1995). Semantic agreement is
often lacking when old data or procedures are used for new purposes not antici-
pated by ther origina developers. Semantic agreements may aso be lacking among
new systems that are the products of independent development efforts (e.g. sysems
developed a different times by different programmers). Findly, determining the
necessary semantic information with accuracy can be very difficult if not impossble
(see Heller (1995) for further explanation).

There ae two mgor mechanisms for interoperation: interface standardization
and interface bridging (Wegner, 1996). Interface standardization links client and
server interfaces to predefined standards, whereas interface bridging is a two-way
linkage between a dlient and server. Interface standardization needs only m + n
links for m clients and » servers, as opposed to m x n links for interface bridging.
Therefore, interface standardization is more scalable and reduces the ‘task of
interconnecting components, but standardized interface systems are closed and thus
may preclude supporting new functiond fegtures, like transactions, which are
desred later but not consdered at the time of standardization. Interface bridging,
on the other hand, is open and more flexible for tailoring requirements of particular
clients and servers, yet it carries a high price in custom deveopment, maintenance,
and lack of extenshility.

3. FEM-DSS interoperability

In order to invedtigate interoperability among FEM-DSSs, five representaive
sysems selected from Mowrer et d. (1997) were andyzed. The systems sdlected
were NED-lI (Rauscher et a., 1997, Twery e d., 1997), LOKI (Bevins and
Andrews, 1993; Beyins et a., 1995; Keane et d., 1996), FVS (Teck et d., 1996,
1997), LMS (McCarter et d., 1998a,b), and INFORMS (STARR Lab., 1993,
Perisho et a., 1995; Choo and Lee, 1997). NED-I, LOKI, LMS, and INFORMS
ae full service FEM-DSSs. FVS, in contradt, is a functiond service sysem
goecidizing in forecading generd vegetation dynamics. However, FVS is highly
modularized with an intricate, ad hoc inter-module gpproach to communication
that was interesting enough to warrant examination. Each FEM-DSS was

W.D. Potter et al. /Computers ond Electronics in Agriculture 27 (2000) 335-354

subjectivey evauated agang the following seven criteria’ language independence
(i.e. language interoperability), platform independence (i.e. platform interoperabil-
ity), architecturd level, module interaction, legacy handling, object orientation and
digtributed processing capability.

A wdl-desgned interoperability architecture for module interaction should be
generic and genera purpose. It should have a well-defined standard for communica-
tion-related issues such as object regigration (a scheme to identify available objects
and their function), discovery (finding a new component when it becomes available)
and cross-network transport protocols (the standard followed by different networks
that are connected, such as the Internet, with a corporate locd area network). If the
mechanism is an ad hoc, point-to-point solution that has, for example, domain
condraints, it will be of little use to others.

Integration of software modules involves deding with legacy components in
many cases. These legacy components often possess a user interface that is difficult
to manage in an integrated environment. This is due to the fact that the user
interface is typicdly deeply intertwined with the functioning of the legacy
goplication.

A legacy system with an 00 framework that adlows object re-use may fecilitate
the integration of that system. Because the Internet offers a new way of ddivering
knowledge to the public, one would be better off if the system supports it.
Furthermore, a mature, well-documented standard with a large customer base is
usualy favored over a sysem that is ill in the conceptud or prototype stage.
Findly, the cost of the architecture has to be factored in. Given that other factors
are comparable, an interoperable framework that is inexpensive or even free may be
more competitive,

Table 1 summarizes our comparison of NED-I, LOKI, FVS, INFORMS, and
LMS (see Liu (1998) for complete details). We arrived at severa findings during
this evduation process. Fird, these systems integrate a diverse range of knowledge
information (eg. decison making, knowledge base, smulaion modding, GIS,
associated databases for cdibration and execution, data visudization, ete.). Inde-
pendent construction, and a lack of USDA Forest Service agency-wide databases,
data standards, and standard hardware, have led to each of these systems being
developed with their own locdized data requirements (data formats, database and
grephicd user interface, etc.). There was a lack of documentation for most systems
regarding their architecturd desgns only system functiondity was typicaly wel
described. Except for LOKI, the interoperable frameworks for al systems evauated
are a a high levd, meaning that they are al domain-specific desgns, resulting in
unique, point-to-point solutions to module communicetions that are difficult to
generdize into generic architectures. LOKI is a promising middieware architecture
that deserves a follow-up investigation and evduation for its potentia agency-wide
use, but its modified. implementation has yet to be digributed and its generic
features remain to be seen. None of the FEM-DSSs evauated supports language
interoperability, platform independence, didributed processng and the Internet.
Most systems (except for NED-I and possibly LOKI) are not object-based,
therefore having no object re-usability. Findly, none of the FEM-DSSs examined

Table |

Comparison of NED-I, LOKI, FVS. INFORMS, and LMS

Criteria Approach
NED-I LOKI FVS INFORMS LMS
Purpose Goa-driven, full service Middleware (claimed) Vegetation dynamics Data-driven, full Vegetation simulation
DSS service DSS analysis and visualization
Leve High Medium High High High
Pomaintimited—Y— forest Ynknown Sln———vcgefaﬂfm———— ——forest Yes forest
management dynamics simulations management management
Language No Yes (clamed) No No No
intcroperability
Platform
Workstation/UN No Yes Yes Yes No
[X
Personal Yes No Yes (MS-DOS mode) No Yes
computer
Independence No No No No No
Module Ad hoc -- point to point Lack of detailed Ad hoc — point to Ad hoc — point to Ad hoc point to point
coordination information point point
Distributed NO Yes (claimed) No No No
processing
Object re-use Source code Unknown - relevant Not object based Not object based Not object based
information unavailable
Dealing with No Presumably no No No Yes, but no standard
legacy mechanism
systems
Internet No No No No No
supported
Status Operational continues Prototype — in re-write, Operationa for many Operational Operational
to add new functionality —not available regions
cost None Wait to see None None None
Interoperability Some Very little Some Some Fair
documentation
Specia remark 00 paradigm In-house research project Powerful post-processmg Uses FVS for Severa linked vegetation

under development

capabilities

vegetation simulations

simulations

PSE~-SEE (0002) LT 24nnaudy ul sa1uo0.123)F pup saindwo)) /1o 1p 131od "d'M

823

342 Poiter et al. /Computers and Electronics in Agriculture 27 (2000) 335-354

in this paper defines an explicit sandard mechanism for dedling with the peculiar-
ities Of legacy agpplications. Although LMS was desgned specificdly to integrate
exising systems, it does 0 in an ad hoc, point-to-point manner.

4. NonFEM approaches

Interoperability outsde the foresiry domain has received extensve attention. We
evauated four such approaches using the same criteria as before (see Liu (1998) for
details). The gpproaches addressed include CORBA (von Bultzingdoewen et d.,
1996; Kramer et a., 1997; Leppinen et d., 1997; OMG, 1997), DCOM (Microsoft,
1995, 1996, 1997, 1998), intelligent agent-based software engineering (Finin € al.,
1994; Genesereth and Ketchpel, 1994; Mayfield et d., 1996), and DIAS/DEEM (the
Dynamic Information Architecture System/Dynamic Environmental Effects Modd)
(Argonne Nationd Laboratory, 1995a; Argonne National Laboratory 1995h).
These approaches encompass severa different areas of computer science, induding:
databases, where the emphasis is on interoperation and data integration; software
enginering, where tool and environment integration issues dominate atificid
intelligence, where sysems condsting of didributed intelligent agents are being
developed and explored; and information systems.

These four gpproaches are designed to provide various sorts of software interop-
erability and easy integration of legacy systems. Table 2 compares and contradts the
four approaches. CORBA and DCOM are two mature, interoperable object models
that provide well-desgned integration and communication standards. Both are
congdered low-level architectures. They are used as the backbones or middieware
of modern digributed object environments. They facilitate the task of building
digtributed applications by presenting the network as one large virtud machine in
which remote objects appear to be locd. Middleware use frees the developer from
many of the low-leve programming tasks necessary to achieve integration of and
coordinated interactions between digtributed objects (such as handling the individ-
uad data packets sent from one machine to ancther), while a the same time
providing many necessary support services. Neither CORBA nor DCOM assume
any doman condraints and can both be agpplied to the integration of any
goplications. They are generic, genera-purpose integration frameworks that are
very popular.

CORBA and DCOM both provide standard specifications for achieving language
interoperability and platform independence. They define their own interface stan-
dards to ded with peculiarities of legacy applications. They support distributed
processng, object re-use, and the Internet. Both architectures are well documented
and the documentation materids are easly accessble to the public — on-line as
wdl as through books and journal articless CORBA can be purchased from
multiple vendors, and DCOM is shipped with Windows NT/98 or can be down-
loaded free for Windows 95.

The intelligent agent-based gpproach and DIAS/DEEM ae high-leved frame-
works in that, primarily, neither intends to address low-levdl detals (eg. object

Table 2

Comparison of CORBA. DCOM. intelligent agent-based approach, and DIAS/DEEM

Criteria Approach
CORBA DCOM Agent approach DIAS/DEEM 5
Purpose Middleware Middleware Distributed computing. semantic Model integration >
interoperability autonomy 3
Level Low Low H;gh Hioh :
Domain limited No No No Environmental s
applications =
Language Yes — has well-defined mapping Yes — has well-defined mapping Yes via ACL Yes. but has 9
independence mechanism (interfacing using Omg mechanism (interfacing using well-defined mechanism “g
1dh MIDL) §
Platform ‘z
Workstation/ Yes Yes Yes Yes g
Unix by
Personal Yes Yes No No)
computer 3
Independence Yes Yes Varies No g
Module General Generd Vaies Ad hoc - point to point 5
coordination X
Distributed Yes — has well-defined transport Yes — has well-defined transport Yes -— uses corba. dcom or other Yes ... may use corba °§..
processing mechanism mechanism protocols in the future £
Object re-use Source code Binary (executable code) Vaies Source code E
Dealing with Orb interfacing DCOM interfacing Vaies Yes —- not well defined N
legacy By
Internet Yes — through 1T1OP Yes — through activex Y es (for most systems) No '§
supported NS
status Mature standard ~= implemented Mature standard — implemented Conceptual/prototype Prototype w
by multiple vendors by Microsoft t
Cost High — $1000 or more No up-front cost — free Varies — high for many if No information @
download or shipped with new implemented &
Windows OS
Technical Well documented — on-line, Well documented — on-line, Many lack detailed documentation Not-well documented

documentation books, and journal articles

Specid

remark Dominates Unix

books, and journal articles

Wedding to Windows OS

Promising in theory

Nice ES-based context
manager

323

W.D. Porter et al. /Computers and Electronics in Agriculture 27 (2000) 335-354

registration and discovery, cross-network transport) about interoperability. Instead,
they use avalable technologies such as CORBA or DCOM as their respective
faclitating middleware. The intelligent agent-based gpproach attempts to address
high-levedl (such as semantic) interoperability, especidly for large, complex systems
whose components need to interact autonomoudy and intelligently in a heteroge-
neous, distributed environment. In the intelligent agent-based software engineering
approach, the agents must possess a variety of abilities. They mugt be able to:
communicate with each other usng an expressve communication language; work
together cooperatively to accomplish complex gods, act on their own initiative; and
use locd information and knowledge to manage loca resources and handle requests
from peer agents. It is a very promisng methodology, but its implementation tends
to be expensive because of its technical complexity (Finin et a., 1994; Genesereth
and Ketchpel, 1994) and it has not matured enough for wide use.

DIASDEEM specificdly deds with integration of environmenta smulaion
modds and therefore is not a genera-purpose architecture that can be easly
goplied to other domains DJAS is an 00 framework into which dmulation
models, information processng applications and databases can be integrated.
DEEM is an example gpplication of DIAS that provides interoperability among
environmenta models’

5. Design criteria for a FEM-DSS interoperability architecture

As we have seen, severd FEM approaches clam to support an interoperable
architecture. However, there are many drawbacks to these approaches. Most
important is the lack of interface standardization (most approaches, like LMS, use
interface bridging). A standard agpproach is preferable to a customized approach.
The nonFEM agpproaches provide some form of standardization but some of them
are dill not mature enough. The remaining choices indude DCOM and CORBA.
CORBA includes overheads such as complexity, expense, performance issues, and
sheer dze that may detract from its apped. DCOM, on the other hand, is an
integral part of the Windows operating sysem and is relaively easy to use for
system integration. These and other reasons mentioned earlier indicate that DCOM
Is the most gppedling architecture (of the approaches evauated) for FEM-DSS
interoperability.

An architectura desgn for FEM-DSS interoperability should satify severa key
requirements. The design should be a framework that is language independent, so
that gpplications can be implemented in different programming languages and used
by software dients that are writing usng different programming langueges. The
desgn should have extenshility, which adlows gpplication developers to cusomize
a system to satisfy new needs. With extensibility, new components can be plugged
into the current system, existing components can be replaced with new ones, or new
components can be derived from exiging ones. In this way, the current system
grows and evolves over time, and components can be re-used by others.

W.D. Potter 41 al. / Computers and Electronics in Agriculture 27 (2000) 335-354 345

Extensibility in turn requires that the design provides a generic set of interfaces
these interfaces ernaLe new components to participate by extending them with
minima impect on qufrent components. Common interfaces dso form the basis for
communications and interactions between components. The proposed architecture
should provide a mechanism that enables communications and interactions. Fur-
thermore, the design should be able to handle the peculiarities of legacy systems.
For example, many legacy applications are not object oriented, and data and
functionality of one application may not be readily avalable to other applications,
even if the applications are implemented using the same programming language and
run on the same machine. There ought to be a standard facility that can be used by
legacy systems to abstract and expose their services, so that these services can be
understood and utilized by the rest of the framework. This often involves cresting
a so-caled object wrapper tha mediates between a legacy system and other
components. The easiest case is that only method interfaces need to be changed.
However, the task will be much more difficult if the user interface of the legacy
system needs to be modified and there is no documentation of its source code.

Finally, the design should be redidicdly gpplicable when implemented. The
mission of the USDA Forest Service is to serve the genera public and help manage
national forests and associaied ecosystems of the United States. Its public, non-
profit nature implies that forest decision support systems developed by the agency
ae often didributed to the public fredly or a nomina cos. As a result, any
integration that presumably relies on cosly commercid products will severdy limit
its use by the public.

6. A DCOM-based |framework

Based on our evdudion, we propose a DCOM-based framework for the
integration of forest decison support gpplications. This framework includes a
typical programming language and development environment such as Microsoft
Visud C+ + Or Visua Basc. Usng NED-I and FVS as example applications, our
prototype demonstrates the effectiveness and appropriateness of integrating legacy
and newly developed applications usng DCOM. The implementation adso indicates
that, based on our [previous experience with CORBA (Maheshwari, 1997), DCOM
programming is easier and more productive. This is because we only focus on the
application-specific implementation while the framework does many routine tasks,
for example, generating the templates necessary for cresting DCOM objects and
registering the applications. An additiond advantage with DCOM is that we can
develop distributed system interfaces using Microsoft resources. A dight difficulty
with DCOM is tha}p it is, after dl, a technicd specification that takes some time to
madter.

Fig. 1 illustrates the genera structure of our proposed DCOM-based architecture
for integration. Canceptudly, it has three mgor components the cdler or client
requesting some service, the controller that has DCOM as its middleware, and the
applications that provide the requested service.

346 / Computers and Electronics in Agriculture 27 (2000) 335-354

The cdler, for example NED-I, is an entity that issues a request to an application
via the controller, and usudly acts as an interface between the entire integrated.
system and the user. This interface is visud and may function differently then those
of application objects in the system. It may be the case tha the cdler is smply an
initiator for the available gpplications and not have a corresponding gpplication
object. The cdler can interact with one or more applications, for example FVS, to
accomplish its work.

The controller is responsble for locating and activating applications. More
importantly, it controls interactions between the caler and an gpplication, and
between applications. The controller uses DCOM as its backbone, because DCOM
provides many system sarvices that facilitate the regigtration of gpplication compo-
nents, finding the location of the application being requested, and the communica
tions between the cdler and the application. While running an application, the
controller coordinates the cdlers didog with the user. An additiond responshility
of the controller is to handle errors that may occur during an application’s
execution. If properly implemented, the entire process executes in a seamless way.
Adding a new gpplication to or replacing an exising one in the integrated system
has minimal effect on how the framework looks to the user. Depending on the
nature of the digtributed system, the controller may aso contain processing rules
that help interpret the requests and ingtructions supplied by the user (via the cdler).
Therefore, usng the controller, the applications participate in a coordinated fashion
within the integrated information system.

=)
¢

[cae |
:

Controller

///j;’ DCOM
T T R\L “
A(l:‘-J:-::;ti;’;)] l [[Application2 l L[Application3 l :

Fig. 1. The DCOM-based interoperable architecture.

W.D. Potter #t al. /Computers and Electronics in Agriculture 27 (2000) 335-354 347

An application is/a component that provides services to the integrated system.
For example, many of the forest decison support gpplications focus on smulation,
display, input/output, or analyss tasks. Each application is encgpsulated within an
interface that follows a standard format (for example, the Microsoft Interface
Definition Language). This gpproach makes it posshble for the application to
communicate with the rest of the framework, such that other gpplications can use
the interface to access the sarvices this gpplication provides. Interfacing aso
provides an effective way to dedl with legacy gpplications. Many legacy applica-
tions were developed with a sand-aone purpose. Ther data and functionality may
not be readily available to other gpplications, certain interface modules of those
legacy applications may be proprietary, limited, or even lacking. Newly constructed
interfaces to the legacy applications act like adapters so that these legacy applica
tions and the rest of the framework can work together, hence enabling re-use of
existing applications.

The architectural |design should be generd purpose, meaning that the framework
should have digtributed processing capability and provide platform independence so
that it is ready to| work in heterogeneous, cross-network environments if it is
required to do so in the future. Overdl, the proposed design is general and makes
no assumptions éout the software gpplications to be integrated. Its standardized
interface scheme enables integration of a variety of applications. It is an open
framework in the sense that application components can be added and/or removed
without drastically affecting the functiondity of the whole syssem. The adoption of
DCOM as the middleware supports this design.

7. The NED-FVS prototype

NED-1 is a full service, goa-driven ecosystem management decison support
system (Rauscher et al., 1997; Twery et d., 1997). It is a multi-language system
consisting of components written in both C+ + and PROLOG. FVS is a widdy
used program for predicting vegetation dynamics over time (Teck et d., 1996). It is
written in FORTRAN-77 as a DOS application. SUPPOSE is a Windows-based,
user-friendly front-end to FVS written in C+ + (Teck et a. 1997). NED-| uses the
functionality provided by SUPPOSE-FVS in order to forecast the consequences of
implementing alternative management scenarios on a subject forest landscape. A
description of the domplete decision-analysis process supported by the NED-FVS
prototype can be found in Rauscher et d. (2000). For the purposes of the present
discussion, we can regard NED-| as the cdller or client program and SUPPOSE-
FVS as a legacy fpp]ication (see Fig. 1). In this section, we presant a brief
description of how we implemented the DCOM-based interoperable framework
discussed previously.

The communication between the NED-I dient and any application module is
through the controller (see Fig. 2). In our prototype, we think of the NED-I client
and the controller as resding on the same computer system. Because of our use of
the DCOM cornmunication backbone, the desgn makes no assumptions about the

348 W.D. Porrer et al. / Computers and Electronics in Agriculture 27 (2000) 335-354

| NED-1 |
3

| Controller |

!

L DCOM l

‘ Suppose » FVS Wrapper

I v
l Suppose Wrapper i
DCOM |-—
MDB-FVS L_-l Suppose FVS-MDB
Module L_T_r Module
FVS wrapper
FVS

Fig. 2. Flow chart of NED-FV'S application.

physicad location of any of the gpplications. The gpplications may resde on the

locd machine or on a remote machine without affecting the functiondity of the
sysem. Normdly, the controller contains processng rules that help interpret the

user’s needs. These processing rules determine the kind of information that must be
collected from the user. There is typicdly continuous interaction between the cdler

and the controller (Fig. 2). The processing rules dso determine which application to
activate. In our NED-FV'S prototype, the controller can be quite smple because it

needs to know only about the SUPPOSE-FVS system. Therefore, NED-I issues a
request to the controller to execute the SUPPOSE-FV'S wrapper and then awaits a
response from the controller. The response contains a message that either the task

was successfully completed or* that some error occurred. If an error occurred,

NED-| reports the type of error to the user, otherwise the user is informed that a
successful forecast has been made.

The controller executes the SUPPOSE-FV'S wrapper. The task of a wrapper is to
interpret the request of a caling client and manage an agpplication program to
implement a solution process. For example, the SUPPOSE-FVS wrapper knows
how to understand requests from the controller and manage the SUPPOSE and
FVS executable programs. The wrapper expects information from the controller
about which Microsoft Access database file contains the reevant NED-l source
data and which database file is supposed to receive the predicted output data. The
wrapper software contains the knowledge of how to proceed with the task. In our
NED-FVS prototype, the wrapper cals a trandator program (MDB-FVS) that
finds the necessary information in a database file and creates the correctly format-
ted output files that both SUPPOSE and FV'S require (Fig. 2). The SUPPOSE-FVS
wrapper then cals the SUPPOSE wrapper.

/ Computers and Electronics in Agriculture 27 (2000) 335-354 349

The SUPPOSE wrapper (Fig. 2) checks to make sure the necessary support files
are available and then executes SUPPOSE. SUPPOSE is a Windows program that
directly communicates with the user to set up an FVS run by creating a keyword
instruction file. This|direct communication between a legacy gpplication and the
user isa compromise/on our pat. Idedly, only the NED-I program should directly
communicate with the user, but SUPPOSE is a complicated legacy application that
would be difficult and expensve to duplicate, a dStudion that is frequently
encountered. This compromise, however, necesstates that the SUPPOSE wrapper
must be more intelligent. It is quite possible for the user to creste a keyword
indruction file that fails to command FV'S to cregte the expected output files in the
expected format. To guard againg this possibility, the SUPPOSE wrapper must
read this keyword instruction file, understand it, and fix any potentid problems it
encounters. If the wrapper finds it cannot fix a problem, it reports an error, stops
the process, and reports this error back to the SUPPOSE-FV'S wrapper that would
then pass it along 10 NED-| and the user. If the keyword ingruction file passes
inspection, then contro] passes back to the SUPPOSE-FVS wrapper.

Now, the SUPPOSE: FV'S wrapper can execute the FVS wrapper dong with the
information about which FVS variant to use. The choices ae SOUTHEAST,
NORTHEAST, SOUTHERN, or SOUTHERN APPALACHIAN. The wrapper
executes the proper| variant and checks that the expected output file has been
created. Again, an error iS reported if the expected output file cannot be found and
control is passed back to the SUPPOSE-FV'S wrapper.

The SU PPOSE-F*’S wrapper then executes the FVS-MDB module that takes the
FVS output file, finds the data of interest, and builds a new Microsoft Access
database file containing the predicted growths and mortdity information. Once the
new database file exists, the SUPPOSE-FVS wrapper reports a successfully com-
pleted job to the controller, and the controller reports the same to NED-l and,
through NED-I, to|the user.

This description of the NED-FVS prototype highlights some important lessons of
more general interest.

1. Wrappers are generally needed to manage the peculiarities associated with most
legacy software.

2. Error checking and reporting is a necessary and important part of the process.
Errors should be reported in the grestest detail possible in order to give the user
and the other system components the best chance to correct them and obtain a
successful run.

3. The organizational framework conssting of a controller—-DCOM -wrapper-ap-
plication sequence can be replicated into as many nested layers as needed in
order to isolate software peculiarities and create a successful problem manage-
ment system.

4. The generic nature of the communication framework need not be compromised
by any peculiarities of the particular legacy software encountered.

5. The generic architecture facilitates the addition of other legacy and new applica-
tions dnce the infragtructure is dready in place.

350 W.D. Potter et al. /Computers and Electronics in Agriculture 27 (2000) 335-354
8. Discussion

To achieve more effective overal decison support for forest ecosystern manage-
ment, it is necessary to integrate various existing decison support system modules.
An interoperable approach offers an interface standard that promotes communica:
tion between component modules and makes it possble to integrate newly deve-
oped modules and refine current modules over time, if necessary. More specificaly,
the gpproach should provide language interoperability, platform independence,
inter-module communication mechanisms, object re-usability, interface standards
for dedling with legacy systems, and distributed processing power. It should not be
restricted by any specific domain characteridics. It should serve only as a middle-
ware framework. Usng these criteria, we reviewed FEM-DSSs thet try to solve the
interoperability issue. Among them are NED-I, LOK1, FVS, LMS and INFORMS.
Unfortunately, most of them adopt ad hoc gpproaches that are difficult to extend
into generic interoperable architectures. LOKI appears to be a promising middle-
ware framework, but it fals to pass dl of the criteria However, a new verson of
LOKI is under development.

In the meantime, new technologies recently emerging (primarily during the mid
1990s) that ded with interoperability were adso invedigated. These include the
intelligent agent gpproach, DIAS/DEEM, CORBA, and DCOM. The agent ap-
proach is not concerned with low-level details about interoperability; usng CORBA
or DCOM as ther respective facilitating middleware, most associated studies have
focused on high-level interoperability such as semantics and complex coordination,
with the magority of avalable agent environments being developed on UNIX
platforms. The implementation of the approach tends to be expensve due to its
technica complexity (Finin et d., 1994; Genesereth and Ketchpd, 1994) and it has
rarely been used in integrating real-world gpplications. Likewise, DIAS/DEEM is
aso a high-level framework. Designed to work in the UNIX environment and use
CORBA &s its communication middieware, it specificdly deds with integration of
environmental effects amulation models and therefore is not a genera-purpose
architecture. CORBA and DCOM are the two architectures that satisfy dl of the
criteria. They have mature specifications, are comparable in functiondity, and both
ae being used widdy in indudria, governmentad and organizationa projects.
Because DCOM is embedded in Windows, it is consdered a better choice for
Windows-based applications (Grimes 1997).

After selecting DCOM, we set about developing a working prototype to integrate
NED-I and FVS. We developed a primitive controller to handle the interactions
and a basic wrapper for the DOS verson of FVS. We ran the prototype on a
Windows95 meching, this meant that we had to ingadl and st up DCOM.
However, when this was done, the prototype worked very smoothly. DCOM was
totaly transparent to the operation of the prototype. Although no performance
tests were carried out, there appeared to be absolutely no performance degradation
as a result of usng DCOM. We are currently enhancing the prototype to integrate
two other gpplications as wdl as have an inteligent query driven controller.

351

The controller is| quite Sraightforward in our current implementation because
of the smplicity of |the coordinating activities it involves. However, if it needs to
coordinate more complex communications between components for more appli-
caions, it may be a good idea to introduce a rule-based system into it (the next
phase of the project addresses this issue). The future controller may aso need to
ded with database |transaction processing for some gpplications. Our implemen-
tation marks the first phase of a long-term project to develop an inteligent
information system |for knowledge, data, and modd management (Potter et d.,
1992, 1994). As the first phase, security issues were not addressed. These issues
will have to be addtessed in the future in order to support our globa distributed
perspective. In addition, deding with user interfaces of legacy applications thet
are to be DCOM ers deserves further investigation, especidly if the servers
are on remote maghines. In the current implementation, the FVS sarver avoids
the user interface jpof its legacy goplicaion by running a sand Smulation in
baich mode that rpquires little interaction with the user. However, in future
phases of this project, we shdl address the issue of legacy applications and how
to transform then :n an effective way so that they can be integrated within our
architecture.

9. On the horizon

New technologies are constantly being developed to improve existing comput-
ing approaches. The area of distributed computing is no exception. For example,
during our investigations reported here, Microsoft, UserLand Software, and De-
velopMentor collaborated on the development of a new interoperability ap-
proach called XML-RPC (Walsh, 1998; Winer, 1998; Udell, 1999). Still in its
infancy, the idea of using remote procedure calling over the Internet is gaining
favor among ‘techies’. XML-RPC may become the new standard for interoper-
ability championed by Microsoft, but it probably will take several years. For
mainstream users that need a distributed interoperability solution today, DCOM
provides the best approach. Of course, it may not be the best approach in a few
years, but that is| the way it goes in a high-technology arena; change comes
quickly. :

Acknowledgements|

The authors would like to extend their utmost gratitude to Keith Reynolds,
Todd Mowrer, Mak Twery, Danid Schmoldt, and Dondd Nute for ther
hdpfu contributions to this work, and the preparation of this paper. Shanyin
Liu was supported by a cooperative research grant from the USDA Forest
Service.

352 W.D. Potter et al. /Computers and Electronics in Agriculture 27 (2000) 335-354
References

Argonne National Laboratory, 1995. The Dynamic Information Architecture System: A High Level
Architecture for Modeling and Simulation. Argonne National Laboratory, University of Chicago.
hitp://www.dis.anl.gov:80/DEEM/DIAS/diaswp.html

Argonne National Laboratory, 1995. DEEM High Level Architecture. Argonne National Laboratory,
University of Chicago. hup://www:dis.anl.gov:80/DEEM/hla.htm]

Bevins, CD., Andrews, P.L., 1993. The LOKI software architecture for fire and ecosystem modeling: a
tinker toy approach. Proceedings of the 12th Conference on Fire and Forest Meteorology, pp.
252-259.

Bevins, C.D., Andrews. P.L., Keane, R.E., 1995. Forest succession modeling using the LOXKXI software
architecture. Lesnictvi-Forestry 41 (4), 158- 162.

Choo, Y.K.. Lee, C.C., 1997. Integrated distributed geographical information systems (IDGIS). http://
starr-www.tamu.edu/choo/papers/esri97.html

Finin, T., Fritzson, R., McKay, D., McEntire, R. 1994. KQML as an agent communication language.
Proceedings of the Third International Conference on Information and Knowledge Management,
ACM Press, New York, NY, pp. I-8.

Gamma, E., Hdm, R., Johnson, R., Vlissides, J, 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA.

Genesereth, M.R., Ketchpel, S.P., 1994. Software agents. Communications of the ACM 37 (7), 48-53.

Grimes, R., 1997. Professional DCOM Programming. Wrox Press Ltd, Birmingham, UK, pp. 565.

Heiler, S., 1995. Semantic interoperability. ACM Computing Surveys 27 (2). 271-273.

Keane, R.E., Long, D.G., Menakis, J.P., Hann, W.J., Bevins, CD., 1996. Simulating coarse-scale
vegetation dynamics using the Columbia River Basin succession model - CRBSUM. Generd
Technical Report INT-GTR-340. USDA Forest Service, Intermountain Research Station, Ogden,
UT.

Kramer, R., Nikolai, R., Koschel, A., Rolker, C., Lockemann, P., 1997. WWW-UDK: a Web-based
environmental meta-information system. SIGMOD Record 26 (1), 16-20.

STARR Lab., 1993. INFORMS-TX Users Guide, INFORMS-TX Version 1.0. STARR Lab., Texas
A&M University, TX.

Leppinen, M., Pulkkinen, P., Rautiainen, A., 1997. Java- and CORBA-based network management.
Computer 30 (6), 83-87.

Liu. S, 1998. Integration of forest decision support systems: a search for interoperability. Master’s
Thesis. The University of Georgia, Athens, GA, pp. 122.

Lockemann, P.C., Kolsch, U., Koschel, A., Kramer, R., Nikolai, R., Wallrath, M., Walter, H., 1997.
The network as a global database: challenges of interoperability, proactivity, interactiveness, legacy.
Proceedings of the 23rd VL DB Conference, pp. 567-574.

Maheshwari. S.S., 1997. A CORBA and Java based object framework for integration of heterogeneous
systems. Master’'s Thesis. The University of Georgia, Athens, GA, pp. 92.

Manola, F.. 1995. Interoperability issues in large-scale distributed object systems. ACM Computing
Surveys 27 (2), 268-270.

Mayfield, J., Labrou, Y ., Finin, T., 1996. Evaluation of KQML as an agent communication language.
Intelligent agents volume 11. In: Wooldridge, M.. Muller, J.P., Tambe, M. (Eds.), Proceedings of the
1995 Workshop on Agent Theories, Architectures, and Languages. Lecture Notesin Artificial
Intelligence. Springer-Verlag, New York. 1996, pp. 15.

McCarter, J.B., Wilson, J.S., Baker, P.J,, Moffett. J.L., Oliver. C.D., 1998a. | andscape management
through integration of existing tools and emerging technologies. Journal of Forestry 96(6), 17-23.

McCarter, J.B., Wilson, J.§,, Baker, P.J., Nelson, C.E., 1998b. Landscape Management System User’s
Manual Version 1.6, LMS Project. College of Forest Resources, University of Washington, pp. 97.
http://silvae.cfr.washington.edu/ims/imsdown.htm

Meek, B.L.. 1994. Programming languages: towards greater commonality. ACM Sigplan Notices 29 (4),
49-57.

Potier el al. IComputers and Electronics in Agriculture 27 (2000) 335-354 353

Microsoft. 1995. The |Component Object Model Specification, Draft Version 0.9. http://
premium.microsoft.com/msdn/library/specs/tech 1/d 1/s1d139.htm

Microsoft. 1996. The Component Object Model: Technical Overview. http://www.microsoft.com/oledev/
olecom/

Microsoft, 1997.

Microsoft, 1998. DCOM

Mowrer, H.T., Barber, K

Dis
premium.microsoft.co

tributed Component Object Model Protocol-DCOM
m/msdn/library/techart/msdn_dcomprot.htm

A Business Overview, http://www.microsoft.com/oledev/olecom/
.. Campbell, J., Crookston, N., Dahms, C., Day, J., Laacke, J., Merzenich, J..

10. http://

Mighton. S., Rauscher, M., Reynolds, K., Thompson, J., Trenchi, P., Twery, M., 1997. Decision

support systems for ¢

Report RM-GTR-29
Station, Fort Collins,
NC3A, 1997. NATO Sta
OMG, 1997. The comm
Document, Object M

cosystem management: an evaluation of existing systems. General Technical
6. USDA Forest Savice Rocky Mountain Forest and Range Experiment
CO, pp. 154.. '
hdards. http://www]l.nc3a.nato.int/NATOSTAN.HTM

n object request broker: architecture and specification. Version 2.1. OMG
anagement Group, Framingham, MA. www.omg.org

Otte. R., Patrick, P., Roy, M., 1996. Understanding CORBA (Common Object Request Broker

Architecture). Prentiig
Perisho, R.J., Oliveria, H
Analysis. STARR La
Potter, W.D., Byrd, T.A
integration of data,

e Hall, Upper Saddle River, NJ.

L., Forrest, L., Loh, D.K., 1995. INFORMS-R8 — A Tool for Ecosystem.
b., Texas A&M University, TX, pp. 8.

.. Miller, J.A., Kochut, K.J., 1992. Extending decision support systems: the
knowledge, and model management. Annals of Operations Research 38,

501-527.

Potter,y W.D., Miller, 1.A., Kochut, K.J., 1994. A hyper-semantic approach to intelligent information:
systems. Integrated Gomputer-Aided Engineering 1(4), 341-357.

Rauscher, H.M., 1995. Natural resource decision support: theory and practice. Al Applications 9 (3), 1.

Rauscher, H.M., 1999. Ecosysten management decision support for public forests: a review. Forest:
Ecology and Management 114, 173-197.

Rauscher, H.M., Kollas¢h, R.P.. Thomasma, S.A., Nute, D.E., Chen, N., Twery, M.J., Bennett, D.J.,
Cleveland, H..1997. NED-I: agoal-driven ecosystem management decision support system: Techni-
cal description. Proceedings of GIS World ’97, Integrating Spatial Information Technologies for
Tomorrow, 17-20 February 1997, Vancouver, BC, pp. 324-332.

Rauscher, H.M., Lloyd, F.T., Loftis. D.L.. Twery; M.J., 2000. A practical decision-analysis process for
conducting ecosystem management at the project-level on National Forests of the United States.
Computers and Electronics in Agriculture (in press).

Reynolds, K., Saunders, M.. Miller, B., Murray, S., Slade, J., 1997. An application framework for
decision support in environmental assessment. Proceedings of GIS World ‘97, Integrating Spatial
Information Technologies for Tomorrow, 17-20 February 1997, Vancouver, BC, pp. 333-337.

Sheth, A., 1998. Changing focus on interoperability in information systems: from system, syntax,
structure to semantigs. In: Goodchild, M.F., Egenhofer, M.J., Fegeas, R., Kottman, C.A. (Eds.),
Interoperating Geographic Information Systems. Kluwer, Dordrecht.

Teck, R., Moeur, M., Eav, B., 1996. Forecasting ecosystems with the forest vegetation simulator.
Journal of Forestry B4 (12), 7-10.

Teck, R., Moeur, M., [Eav, B, 1997. The forest vegetation simulator: a decision-support tool for
integrating resources science. http://www fs.fed.us/ftproot/pub/fmsc/fvsdesc.htm

Twery, M.J., Bennett, D.J., Kollasch, R.P., Thomasma, SA., Stout, S.L., Pamer. J.F., Hoffman, RA..
DeCalesta, D.S., Hornbeck. J., Rauscher, H.M., Steinman, J., Gustafson, E.. Miller, G., Cleveland,
H., Grove, M., McGuinness, B., Chen, N., Nute, D.E.. 1997. NED-| : an integrated decision support
system for ecosystem management. Proceedings of the Resource Technology ‘97 Mesting.
pp. 331-343.

Udell, J., 1999. Exploring XML-RPC: Web-based Distributed Computing Gets Even Easier.
BYTE.com. http://byte.com/features/1999/06/0607XML _RPC.html.

von Bultzinpsloewen, G., Koschel, A., Kramer, R., 1996. Active information delivery in a CORBA-
based distributed information system. Proceedings of the First 1FCIS International Conference on
Cooperative Information Systems, pp. 218-227

354 W.D. Potter et al. /Computers and Electronics in Agriculture 27 (2000) 335-354

Walsh, J., 1998. Microsoft Spearheads Protocol Push. InfoWorld Electronic. hitp://www.infoworld.com/
cgi-bin/displayStory.pl?980710.whsoap.htm

Wegner, P., 1996. Interoperability. ACM Computing Surveys 28 (1), 285-287.

Winer, D., 1998. XML-RPC For Newbies. http://davenet.userland.com/1998/07/14/xmIR pcForNewbies

