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    A New Algorithm for Stand Table  
    Projection Models 
 
        Quang V. Cao and V. Clark Baldwin, Jr. 
 
 
 

 ABSTRACT. The constrained least squares method is proposed as an algorithm for projecting stand  tables 
through time. This method consists of three steps: (1) predict survival in each diameter class,  (2) predict 
diameter growth, and (3) use the least squares approach to adjust the stand table to satisfy the constraints  of 
future survival, average diameter and stand basal area.  The new method was evaluated against the Weibull 
parameter-recovery approach and another stand table projection method, using data from direct-seeded stands 
of loblolly pines (Pinus taeda L.). The constrained least squares method provided the best goodness-of-fit 
statistics (K-S, ×2, and an error index) that were significantly different from those produced by the other two 
methods. This new algorithm can be employed in cases where diameter data do not necessarily follow the 
Weibull distribution. For. Sci.   45(4):506-511. 
 Additional Key Words: Pinus taeda, loblolly pine, direct-seeded stands, Weibull distribution, constrained 
least squares. 

 
 
 

STAND TABLES GIVE NUMBER OF TREES In each 
diameter class. They supply information on stand structure for 
calculation of product volumes and therefore play an 
important role in growth and yield modeling. A stand table 
projection model provides prediction of a future stand table 
based on the current stand table. The simplest stand table 
projection models apply tree mortality information and diam-
eter growth rates in adjusting the stand table (Chapman and 
Meyer 1949, Avery and Burkhart 1994). 

Clutter and Jones (1980) and Pienaar and Harrison 
(1988) calculated number of surviving trees for each diameter 
class based on relative size (tree basal area over average basal 
area per tree) and then projected diameter growth for each 
diameter class. 
Nepal and Somers (1992) projected the stand table using a 
diameter growth equation implied from the Weibull 
distribution (Bailey 1980), then adjusted the stand table such 
that basal area and trees per unit area matched either observed 
or predicted values. Their model performed better than Pienaar 
and Harrison's (1988) model in projecting stand tables of 
natural even-aged longleaf pine (Pinus palustris Mill.) stands. 
Tang et al. (1997) derived the relationship between diameter 
cumulative distributions and stand-level attributes at two stand 
ages. The parameters of the tree survival and diameter growth  
 

functions were then recovered from future average diameter, 
quadratic mean diameter, and survival. 

This article introduces a new algorithm for stand table 
projection models. The resulting future stand table produces 
estimates of stand basal area, number of trees per hectare, and 
average tree diameter that are compatible with either observed 
values or predicted values from growth and yield models. 

 
Data 

 
Data were collected from 148 permanent plots in loblolly 

pine (Pinus taeda L.) direct-seeded stands in Louisiana. These 
fixed-radius plots varied in size from 0.021 to 0.048 ha. The 
plots were established between 1960 and 1971 in Rapides 
Parish (107 plots), Natchitoches Parish (27 plots), and Union 
Parish (14 plots), and were measured from 2 to 6 times (Table 
1). Table 2 shows the distribution of 679 observations by stand 
age and basal area. These observations constituted 527 growth 
periods ranging from 2 to 5 yr. 

 
Methods 

 
The new algorithm for stand table projection consists of 

three steps: (1) computing survival and allocating mortality; 
(2) deriving diameter growth for individual trees; and (3)
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Table 1. Distribution of 148 loblolly pine plots by measurement age. 
 

No. of plots Measurement ages 
51 8, 11, 13, 16, 21 
5 8,11,16,21 
13 9, 14, 18, 23 
3 10, 14, 19 
18 10, 14, 19, 24 
4 10, 14, 24 
2 11, 14, 17 
16 11, 14, 17, 22 
7 11, 16, 21, 26 
18 11, 16, 21, 26, 30, 34 
1 14, 18, 23 
2 14, 19, 24 
8 16, 21, 26, 30, 34 

adjusting projected diameters to match future average diam-
eter and stand basal area. 
 
Survival 

Since we have no information regarding what went on 
during the growing period, the alternatives are to assume that 
all mortality occurs at either the beginning or the end of the 
period. The drawback of the latter is that dead trees are also 
included in tracking diameter growth. Therefore we assumed 
in this model that all mortality occurs at the beginning of the 
growth period. The surviving number of trees for the ith 
diameter class was predicted using the following survival 
function: 

( )[ ]{ }1minexp1ˆ
1112 +−−−= DDbnn iii  (1) 

where 

in1  = current number of trees per hectare in the ith 

           diameter class, i = 1, 2, ..., p, 
 

p = number of diameter classes, 
 

in2
ˆ  = future surviving number of trees per hectare in 

    the ith diameter class, 
 

iD  = midpoint diameter of the ith class,  

 

1minD  = midpoint of the current minimum diameter class, 

  and 
 

1b  = coefficient to be determined. 

Based on this equation, more trees survive to the end of 
the growing period for large diameter classes as compared to 
small diameter classes, relative to the minimum diameter 
class. The coefficient 1b ,which is negative, is calculated such 

that in2
ˆ will sum up to N2, the total future surviving trees per 

hectare. A numerical method such as Newton-Raphson or 
secant method (Press et al. 1996) can be used to solve for b l. 

Since mortality rate is not evenly distributed among 
diameter classes, the diameter distribution will change after 
mortality. As a result, the stand attributes need to be updated. 
The current average diameter ( )1D and basal area per hectare   

( )1B  after mortality are given by:  

2

2

1

ˆ

N

Dn

D i
ii∑

=        (2) 

   

 
 
Table 2. Distribution of observations from direct-seeded stands of 

loblolly pines by stand age and basal area. 
Stand basal area (M2 /ha) Age (yr) 

from seed <5 10 20          30         40          50 Total 
8-10        15 60 18   2     95 
11-13   3 35 76 36     1  151 
14-16   1   22 28 60   37  148 
17-19  12 12 17   12   2   55 
20-22    9 13 21   58    6 107 
23-25    1   4 15     9   9   38 
26-28      3   29   1   33 
30      5   17   4   26 
34      5   18   3   26 

All 19 139 151 164 181 25 679 
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where K = n/40,000 (to convert diameter in cm to area in square meters). 

 
Diameter Growth 
Increase in Minimum Diameter 

For some plots, the minimum diameter increased at the 
end of the growth period. It was very difficult to model this 
change, which did not strongly relate to other stand variables. 
The minimum diameter was assumed to increase (i.e., all trees 
in the current minimum diameter class either die or move up 
to higher classes) when there is a sufficient shift in diameter 
distribution based on the arithmetic and quadratic mean 
diameters. 

Tang et al. (1997) expressed future diameter (X2) as a 
function of current diameter (X1 ): 

 
                           ε++= 112 XbbX o        (4)              

  
where E is a stochastic error term that contains both random 
and nonlinear components of the tree diameter growth. The 
future minimum diameter (Dmin2) can be modeled from 
current minimum diameter (Dmin 1) using the above diameter 
growth function without the error term: 
 

1102 minmin DbbD +=   (5) 

        
Tang et al. (1997) showed that the coefficients b0 and b1 

of (5) may be obtained from 
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and 

1120 DbDb −=    (7) 
   

where Qj and jD are quadratic mean diameter and average 

diameter, respectively, at time j. 
In this model, the change in minimum diameter, in terms 

of number of diameter classes, was determined as the largest 
integer that was less than or equal to (Dmin2 – Dmin1)lh, 
where h is the class width. For example, if the increase in 
minimum diameter for the growth period was 5.1 cm, then the 
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diameter distribution would be shifted forward (to the right) 
by two classes or 4 cm if 2 cm diameter classes are used. 

 
Implied Diameter Growth 

Procedures used in this step were described in detail by 
Nepal and Somers (1992). Parameters of a Weibull 
distribution (Bailey and Dell 1973) were recovered from DI 

and Bt to approximate the current diameter distribution of the 
stand immediately after mortality. Similarly, parameters of 
another Weibull distribution to characterize the future 
diameter distribution were recovered from DZ and B2, the 
future average diameter and basal area per hectare, 
respectively. The Weibull cumulative distribution function at 
time i, Fi, having location parameter ai, scale parameter bi, and 
shape parameter ci is defined as follows: 
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An implied diameter growth function (Bailey 1980) was 

derived from the Weibull parameters at times 1 and 2: 
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where Xj is tree diameter at time j. 
Finally, the movement of trees from one diameter class 

to another was computed using the assumption that trees in 
each diameter class followed a doubly-truncated Weibull 
distribution. Suppose the ith diameter class is specified by the 
lower and upper limits, li and ui, respectively. If d1 and d2 are 
diameter values in the ith class (li <_ di <_ d2 <_ ui), then 
number of trees in the interval [d1, d2], or n[d1, d2, is given by 
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where nli is the number of trees in the ith diameter class at 
time 1. 

One item distinguishes the procedures presented in this 
step from Nepal and Somers' (1992) method (hereafter re-
ferred to as the N&S method). The values of D1 and B1 for the 
current stand were calculated before mortality in the N&S 
method, but were computed immediately after mortality in the 
proposed approach. The benefit of this approach is that 
diameter growth estimation is based only on trees that survive 
the growing period. 

 
Adjustment of Stand Table 

The result from the previous step was a new stand table 
for the future stand, with in2

ˆ ,being the number of trees per 
acre in the ith diameter class at time period 2. This new stand 
table will provide values of average diameter and stand basal 
area different from 2D and B2. 

A constrained least squares (LS) procedure, developed 
by Matney et al. (1990) for their individual tree model, was 
modified in this study to adjust the future stand table. The 

final number of trees per hectare in the ith diameter class, n2i, 
was calculated by minimizing  

2
22 )ˆ( i

i
i nn −∑     (11) 

subject to the following constraints: 

22 Nn i =∑     (12a) 
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where the summation signs denote the sum over all diameter 
classes. This step can be interpreted as adjusting values of the 
stand table ( )in2

ˆ to new values (n2i) such that the three 
constraints (12a to 12c) are met. 

The above constrained least squares problem can be 
rewritten as: 
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where E denotes the sum over all diameter classes (for values 
of i from I to p), p is the number of diameter classes, and XD's 
are Lagrangian multipliers.  

The solution to this problem is given by differentiating 
(13) with respect to n2i; and then setting the derivative equal to 
zero: 
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or 
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The Lagrangian multipliers ( jλ 's) can be easily solved 

from the following system of three linear equations: 
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where Ó denotes the sum over all diameter classes (for values 
of i from I to p). Note that equation (16a) is obtained by 
summing (15) over all diameter classes. Multiplying equation 

(15) by Di or D 2
i  and then summing over all diameter classes 

gives equation (16b) or (16c), respectively. 
Sometimes the computed value of n2i was negative for a 

particular ith diameter class. This often happened when there 
were "gaps" in the diameter distribution (i.e., when the 
observed number of trees is zero for that diameter class). If n2i 
is less than 0, in2ˆ  was set to zero and the adjustment step was 
repeated. This procedure was necessary for 21% of the 
distributions; and just one adjustment was adequate in most 
cases. 
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A Numerical Example 
 
The following example presents the results of a stand 

table projection from age 19 to age 24 for plot 318027 in a 
loblolly pine stand (Table 3). The current stand table was 
given in column (2), and the future stand attributes were N2 = 
1952 trees/ha, 2D = 14.13 cm and B2 = 34.68 m2/ha (bottom of 
column 3). 

The coefficient b1 of Equation (1) was calculated using 
the secant method (Press et al. 1996) to be -0.1155, so that the 
stand density after mortality was reduced from 3603 to 1952 
trees/ha (column 4). The average diameter and quadratic mean 
diameter after mortality were 10.95 and 11.98 cm, 
respectively. The increase in minimum diameter was 
calculated from equations (5, 6, and 7) to be 2.64 cm. As a 
result, the minimum diameter increased by one 2 cm class, and 
the entire diameter distribution was shifted forward by one 
class (column 5). At this point, the current minimum diameter 
class was 4 cm, and the average diameter and stand basal area 
were computed to be 12.95 cm and 29.34 m2/ha, respectively. 

The Weibull parameters were recovered from current and 
future stand attributes as follows: 
Time D (cm)    B(m2/ha)  a      b     c 
   1 12.95      29.34 3.0 11.2318 2.1508 
   2 14.13      34.68 3.0 12.5640 2.2885 
 

The diameter growth function implied from the above 
current and future Weibull parameters was 
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where X1 and X2 are current and future tree diameters, respec-
tively. The current diameter can be solved backwards from the 
future diameter: 
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The following example illustrates the calculations of 

number of trees per hectare for the 6 cm future diameter class 
that spans from 5 to 7 cm. These two future diameters 
correspond to current diameters of 4.59 and 6.32 cm, 
respectively, from Equation (18). The interval [4.59 cm, 6.32 
cm] can be divided into two subintervals. The first one extends 
from 4.59 to 5.00 cm, or 38.70% of the 24.26 trees/ha in the 
current 4 cm class. The second subinterval covers from 5.00 to 
6.32 cm, or 58.59% of the 209.86 trees/ha in the current 6 cm 
class. The above proportions were computed using Equation 
(10). Number of tree/ha in the future 6 cm class is therefore: 

 
( ) ( ) hatrees /34.13286.2095859.026.243870.0 =+    

 
Number of trees per hectare for other future diameter 

classes were determined in the same manner (column 6 of 
Table 3). Note that the resulting stand basal area was 34.70 
m2/ ha, which needed to be adjusted to the given future basal 
area of 34.68 m2/ha. 

In the adjustment step, the solution to the system of 
Equations (16a-c) was 1λ = 1.3679, 2λ = -0.2144, and 3λ = 

0.0066. The final stand table (column 7) was computed from 
Equation (14). This stand table produced stand attributes that 
matched the specified values of N2, D 2, and B2. 

Figure 1 presents the observed stand tables of plot 
307033 at ages 30 and 34, and the projected stand tables at age 
34 by the constrained LS method and by the N&S method. 
Note that both methods had difficulties in handling the first 
diameter class (8 cm). The increase in arithmetic and quadratic 
mean diameters was not sufficient in this case for the 
constrained LS method to detect the increase in minimum 
diameter. Both methods did well in approximating the "gap" 
in the 32-36 cm 

Table 3. A numerical example demonstrating the application of the new method to projecting stand table from age 19 to age 24 for plot 318027. 
 

Observed trees/ha 
 

Predicted trees/ha 
 

Diameter 
(cm) 
(1) Age 19 

(2) 
Age 24 

(3) 
After mortality 

(4) 
 

Shift 1 class 
(5) 

After D growth 
(6) 

Final 
(7) 

  2 222.39    24.26    
  4 716.58   24.71 209.86   24.26   14.87   14.26 
  6 741.29 172.97 325.23 209.86 132.34 132.02 
  8 345.94 148.26 191.83 325.23 256.05 255.98 
10 296.52 222.39 191.67 191.83 244.42 244.53 
12 444.77 247.10 319.95 191.67 181.96 182.22 
14 370.64 345.94 288.08 319.95 230.35 230.69 
16 172.97 222.39 142.39 288.08 297.87 298.24 
18 197.68 197.68 169.94 142.39 235.78 236.13 
20   74.13 148.26   65.87 169.94 146.67 146.95 
22     0.00 148.26     0.00   65.87 139.97 140.12 
24   19.71   49.42   22.98     0.00   48.79   48.76 
26      0.00    22.98     5.57     5.30 
28 
 

   24.71     17.41   16.86 

N*        3,603         1,952       1,952         1,952         1,952         1,952 
D    8.97   14.13   10.95   12.95   14.13   14.13 
Q  10.23   15.04   11.98   13.83   15.04   15.04 
B  29.60   34.68   22.01   29.34   34.70   34.68 

*   N is total number of trees / ha, D is average diameter in cm, Q is quadratic mean diameter in cm, and B is basal area in m2/ha. 
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Figure 1. Observed diameter distributions for plot 307033 at (a) age 30 
and (b) age 34. Diagram (b) also shows predicted diameter 
distributions by the constrained least squares method and Nepal and 
Somers' (1992) model. 

 

classes. The observed 25 trees/ha at the 40 cm diameter class 
created problems for the N&S method, which predicted 18 
trees/ha at the 38 cm class and only 3 trees at the 40 cm class. 
The constrained LS method performed better by predicting 4 
and 20 trees/ha at the 38 and 40 cm classes, respectively. 
 
Evaluation Criteria 

In this study, the constrained LS model was evaluated 
against the N&S method and the Weibull parameter-recovery 
method, using the data from direct-seeded stands of loblolly 
pines. The evaluation criteria included the two-sample 
Kolgomorov-Smirnov (K-S) statistic (Steel and Torrie 1980), 
the chi-square ( χ 2) statistic (Steel and Torrie 1980), and an 

 

error index similar to that proposed by Reynolds et al. (1988). 
This error index was computed for each plot as the sum of 
absolute differences between observed and predicted propor-
tions of trees in each diameter class. The three statistics 
measured the goodness-of-fit of the predicted future stand 
tables when compared to the observed stand tables, with lower 
values indicating a better fit. 

 
Results and Discussion 

 
    Means and standard deviations of the evaluation statistics 
for each of the three methods are presented in Table 4. The 
Weibull parameter-recovery method consistently ranked in 
third place based on all statistics. This suggests that some plots 
might have irregular or multimodal diameter distributions that 
could not be well approximated by a single Weibull 
distribution. 
    The constrained LS method resulted in the lowest mean 
values of all evaluation statistics. The reduction in values of 
the statistics from the N&S method to the constrained LS 
approach was 10% for the K-S statistic, 20% for the χ 2

 

statistic, and 7% for the error index. Duncan's multiple range 
tests showed that the three methods were significantly differ-
ent at the 5% level for all statistics (Table 4). The K-S tests 
failed to reject the null hypothesis that the observed and 
predicted stand tables came from the same population at the 
5% level for all three methods. The χ 2

 tests, performed at the 
5% level, rejected that hypothesis on 9.11%, 9.30%, and 
4.17% of the stand tables for the Weibull parameter-recovery 
approach, the N&S method, and the constrained LS method, 
respectively. These results indicate that on the average, the 
constrained LS method produced stand tables that better 
approximated observed future stand tables than did the N&S 
method. 
    There are three possible explanations for the better perfor-
mance of the constrained LS method. 

 
1. Nepal and Somers (1992) derived the implied diameter       

growth equation based on future stand attributes and 
current stand attributes before mortality. The proposed 
method used current stand attributes after mortality for 
this purpose; therefore, it improved predictions of diameter 
increment by filtering out the confounding effect of tree 
mortality. The diameter growth function [Equation (9)] 
was recovered from current and future stand attributes. It 
makes good sense to include in these calculations only 
trees that would survive the growing period. 

 
2.  The adjustment step in the constrained LS method made 

sure that the resulting stand tables produced the following 
compatible stand attributes: trees and basal area per 

 

Table 4.  Means (and standard deviations) of the evaluation statistics by method (n=527) 
Evaluation Statistic  

Method K-S ×2 Error Index 
Weibull 0.058a  (0.028)∗ 9.063a (5.821) 0.286a (0.135) 
Nepal and Somers  0.050b (0.026) 8.002b (6.428) 0.261b  (0.131) 
Constrained LS  0.045c (0.023) 6.389c (4.804) 0.243c (0.121)   

                                                        
∗ For each evaluation statistic, means with the same letter are not significantly different at the 5% level (from the Duncan's multiple range test) 
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hectare and average diameter. The latter attribute was not 
employed as a constraint in the N&S method; its addition 
to the list of constraints incorporated in the new method 
resulted in better stand table projections. 

 
3.  The minimum diameter is not allowed to change in the 

N&S model but will increase in the constrained LS method 
in cases where there is a sufficient shift in the diameter 
distribution. As a result, the constrained LS model 
provided better projections of the stand tables in these 
cases. 

 
The constraints that the predicted stand tables must 

match future stand attributes are logical when the stand 
attributes are observed values. In this case, the constraints 
ensure that predicted stand tables are closer to the observed 
stand tables. On the other hand, stand tables may be derived 
from future stand attributes predicted from a stand-level 
growth and yield model. The reliability of these stand tables 
depends heavily on how well the stand-level model predicts 
for the population. 

 
Conclusion 

 
The proposed constrained LS method consists of three 

logical steps: (1) predict survival in each diameter class, (2) 
predict diameter growth from the current and future stand 
attributes, and (3) adjust the stand table to match the future 
average diameter and stand basal area. Results from 
evaluations against the Weibull parameter-recovery approach 
suggest that the constrained LS method can perform well on 
diameter data that do not exactly follow the Weibull 
distribution. 

In addition to the constraints of number of trees and 
basal area per hectare, the extra constraint of average diameter 
ensured that predicted stand tables more closely 

approximate observed stand tables. That explained the overall 
better performance of the constrained LS method compared to 
Nepal and Somers's (1992) method on the direct-seeded 
loblolly pine data set. 
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